
212 Int. J. Grid and Utility Computing, Vol. 10, No. 3, 2019

Copyright © 2019 Inderscience Enterprises Ltd.

An efficient pathfinding system in FPGA for edge/
fog computing

Alexandre Solon Nery*
Departamento de Engenharia Elétrica,
Universidade de Brasília,
Brasília, DF, Brazil
Email: anery@unb.br
*Corresponding author

Alexandre da Costa Sena
Departamento de Informática e Ciência da Computação,
Universidade do Estado do Rio de Janeiro,
Rio de Janeiro, RJ, Brazil
Email: asena@ime.uerj.br

Leandro S. Guedes
Departamento de Informática,
Instituto Federal de Educação,
Ciência e Tecnologia de Mato Grosso do Sul,
Corumbá, MS, Brazil
Email: leandro.guedes@ifms.edu.br

Abstract: Pathfinding algorithms are at the heart of several classes of applications, such as
network appliances (routing) and autonomous vehicle navigation. Thus, this work aims at
designing and evaluating an efficient pathfinding FPGA accelerator based on Dijkstra’s shortest
path algorithm to mitigate the increasing network traffic problem at the edge of the network. The
system is designed using Xilinx High-Level Synthesis (HLS) compiler and is implemented in the
programming logic of a Xilinx Zynq FPGA, embedded with an ARM microprocessor which is
not only in charge of controlling the co-processor but also in charge of lightweight TCP/IP
network communication. Extensive performance, circuit-area, and energy consumption results
show that the co-processor can find the shortest path about 2.5 times faster than the system’s
ARM microprocessor, on a simulation scenario test case based on touristic locations in the city of
Rio de Janeiro, acquired from the OpenStreetMap database.

Keywords: pathfinding; FPGA accelerator; high-level synthesis; fog computing; edge computing.

Reference to this paper should be made as follows: Nery, A.S. and da Costa Sena, A. and
Guedes, L.S. (2019) ‘An efficient pathfinding system in FPGA for edge/fog computing’,
Int. J. Grid and Utility Computing, Vol. 10, No. 3, pp.212–223.

Biographical notes: Alexandre Solon Nery graduated in Computer Science from Universidade
Católica de Brasília (2006), having received his MSc degree (2010) and DSc degree (2014) in
Systems Engineering from Universidade Federal do Rio de Janeiro. He is currently acting on the
following subjects: reconfigurable computing, distributed and parallel computing.

Alexandre da Costa Sena graduated in Computer Science from Universidade Federal Fluminense
(1995), having received his MSc degree (2000) and DSc degree (2008) in Computer Science
from Universidade Federal Fluminense. His research interests include parallel computing, high-
performance computing, fog computing and dynamic scheduling.

Leandro S. Guedes graduated in Computer Science from Universidade Federal de Pelotas (2013),
having received his MSc degree (2016) in Computer Science from Universidade Federal do Rio
Grande do Sul. He is currently acting on the following subjects: computer graphics, information
visualisation, human-computer interaction and distributed systems.

 An efficient pathfinding system in fpga for fog computing 213

This paper is a revised and expanded version of a paper entitled ‘Efficient Pathfinding
Co-Processors for FPGAs’ presented at the ‘2017 International Symposium on Computer
Architecture and High-Performance Computing Workshops (SBAC-PADW)’, Campinas, Brazil,
17–20 October 2017.

1 Introduction

The rapid development of pervasive computing and Internet
of Things (IoT) applications poses several challenges (e.g.,
efficiency and low latency) on traditional centralised cloud
computing systems that are the basis for most web services
(Ai et al., 2017). To overcome such challenges, new
technology is changing the centralised cloud computing
architecture to edge devices on the network border, in a
trend called fog or edge computing (Cerina et al., 2017;
Li et al., 2018). Hence, while some functions are better
suited for cloud computing, others are naturally more
advantageous to be carried out by fog nodes (Liu et al.,
2018; Ahn et al., 2017). Thus, the focus has shifted to bring
specialised computation and communication devices nearer
to the user. Many modern embedded systems, such as
smartphones and tablets, are already being equipped with
in-house customised Multi-Processing Systems-on-Chip
(MPSoC), often built around ARM multi-core architectures,
like the Cortex-A53, A72 and A73 chips. These application-
specific integrated circuit systems include inside a single
chip key advanced heterogeneous components specialised in
media and communication processing, yielding higher
efficiency and reduced energy consumption.

Vendors of Field-Programmable Gate Arrays (FPGAs),
such as Xilinx and Altera, have recently embedded ARM
microprocessors into the programmable logic of their
re-configurable chips, allowing the extension of the
microprocessor’s basic functions. Combined with High-
Level Synthesis (HLS) compiling tools (Vivado, 2017;
Clow et al., 2017; Uliana et al., 2013) that are able to
translate C code to Register Transfer Level (RTL) Hardware
Description Language (HDL), such as VHDL or Verilog, it
is not only possible to quickly prototype novel hardware
Intellectual Property (IP), but also to offload code execution
to efficient and dedicated parallel hardware accelerators
implemented on the FPGA-side of the computing system,
further improving its overall efficiency. For instance, the
Zynq architecture (Millington and Funge, 2009) is
embedded with an ARM Cortex-A9 microprocessor, which
is often used to run the least computation intensive part of
the code, while the FPGA runs the high-performance
demand and energy efficient part.

Pathfinding, also known as path planning, is a class of
algorithms that can be used to determine the sub-optimal
route between a starting point and a goal. They can be used
in a wide range of applications, such as in network
appliances and games (Togelius and Yannakakis, 2016).
Lately, pathfinding algorithms have an important role in the
implementation of autonomous vehicles (Dolgov et al.,
2009). In most cases, tasks need to continuously seek for
suitable routes in a graph which represents the paths, such

as a map. Thus, the pathfinding algorithms should execute
quickly enough to not stall the path planning program.

This work extends on our previous workshop paper
(Nery et al., 2017) and proposes an efficient pathfinding
system in FPGA suitable for edge/fog computing services
targeting autonomous vehicles applications. Differently,
from our previous work, that had a random 10 10 lattice
graph pre-loaded into each evaluated co-processor, we
actually implemented an actual fog node that is able to
receive a map from the cloud or other fog node and compute
a route in its co-processor. The system consists of a Xilinx
ZC706 development board equipped with a Zynq XC7Z045
FPGA, different from the older model (XC7Z010) used in
the previous work, allowing the analysis of larger input
graphs. Moreover, the system’s programmable logic only
implements Dijkstra’s shortest path algorithm (Dijkstra,
1959), because we want to efficiently determine the best
route from a given starting point to a given goal. Thus,
Breadth-First Search (Lee, 1961), Greedy (Cormen et al.,
2009) and A* (Hart et al., 1968) pathfinding algorithms are
not implemented. Also, the ARM microprocessor handles
the communication part of the system on top of the
FreeRTOS operating system, in order to allow the vehicle to
download maps from the OpenStreeMap (OpenStreetMap
contributors, 2017) database using the lightweight TCP/IP
network stack (Dunkels, 2001). The aim is to design and
evaluate specialised computing devices placed at the edge of
the network to efficiently determine the best route in
edge/fog computing architectures based on real map
locations.

The rest of this paper is organised as follows: Section 2
describes the state-of-the-art related works. The system’s
architecture is described in Section 3, which also explains
the pathfinding algorithm implemented in the FPGA
programmable logic. Extensive experimental results are
presented in Section 4. Finally, Section 5 concludes and
presents ideas for future work.

2 Related work

Hardware accelerators, such as GPUs and FPGAs, are often
used to execute the most timing consuming parts of a specific
application or group of applications, leaving the less critical
part of the computation to the host micro-processor. They
are often designed for applications with high potential for
parallelism exploitation, such as physics simulation (Yeh et al.,
2007; Bose and Rajagopala, 2012; Yang, 2008), clothing (Liu
et al., 2012), 3D-object collision (Hamano et al., 2016),
model-based robotics (Itoh, 2016; Fabry and Sinclair, 2016)
and others (Daga et al., 2011; Vaughn-Nichols, 2009). More
recently, hardware accelerators are also being used in the

214 A.S. Nery, A. da Costa Sena and L.S. Guedes

edge/fog computing context (Tan et al., 2017; Cerina et al.,
2017; Koromilas et al., 2017).

Pathfinding is also a common operation found in artificial
intelligence, networking and route planning applications, such
as autonomous vehicles (Dolgov et al., 2009; Kok et al., 2013).
An evaluation of pathfinding algorithms has been presented in
da Silva and Villela (2016), which analyses the Breadth-First,
Depth-First, Ordered, Greedy and A* algorithms on Android
platforms. Results show that heuristics-based methods, such as
A*, are more efficient in terms of execution time for games.

An implementation of a FPGA Bellman-Ford pathfinding
algorithm can be seen in Jagadeesh et al. (2011). The
architecture distributes the input graph among RAMs of several
Processing Elements (PEs) implemented on a Xilinx Virtex-5
SX95-T FPGA, with each PE in the design being mapped to
a node of the graph. It runs at 143 MHz for a 128 node and
466 edges graph, taking around 2418 cycles to compute a
path on such graph. While fast, the authors assume that the
graph topology has already been supplied to each PE. Also,
detailed information about the host processor architecture or
the communication protocol used among the PEs is not
provided, as well as energy consumption results, which
makes it impossible to compare to the work presented here.

A FPGA design for large-scale graph processing is
presented in Zhou et al. (2016). The design uses large
external memory for storing graph data and FPGA for
acceleration. The parallel architecture in FPGA is used
to saturate the external memory bandwidth and concurrently
process multiple input data to increase throughput.
Performance and energy consumption are measured in terms
of Million Traversed Edges Per Second (MTEPS). Another
FPGA design is presented in Umuroglu et al. (2015),
targeting the Breadth-First search algorithm acceleration
using hybrid FPGA-CPU processing on a range of synthetic
small-world graphs. The hybrid approach is able to perform
better than software-only, also in terms of MTEPS, on the
ZedBoard platform.

The work in Idris et al. (2009) describes an FPGA
implementation of the A* algorithm, but it does not present
several important results, such as execution time, circuit-
area and energy consumption. Also, only the heuristic cost
function is implemented on the FPGA, while the rest is
expected to run elsewhere.

The work in Menon (2017) presents challenges and open
problems to move from vehicular cloud computing to
vehicular fog computing. It highlights that an intermediate
fog layer between the cloud and the mobile devices can
provide low latency, better QoS, improve the efficiency of
the network, reduce energy consumption, among other
advantages.

On the other hand, the article in Lee et al. (2016)
discusses the evolution of intelligent vehicle grid to an
autonomous vehicular fog that are capable of making its
own decisions about driving customers to their destinations.
Since the urban fleet of vehicles is evolving from a
collection of sensor platforms to the internet of autonomous
vehicles the fog layer will be responsible to compute the

huge amount of data produced in a feasible time. The article
shows a vehicular fog model in detail and discusses the
potential design perspective with highlights on autonomous
vehicles for future research.

A Reference Architecture for Fog Computing was
defined in Consortium (2017) by the OpenFog Consortium
that was founded by ARM, Cisco, Dell, Intel, Microsoft and
Princeton University. According to this document unfettered
cloud computing approaches are not able to support the
growth of data provided by transportation, agriculture,
visual security, wind farms, among others IoT projects.
Therefore, the OpenFog architecture is the baseline to
develop an open architecture fog computing environment,
creating standards to enable interoperability in IoT, 5G,
artificial intelligence, tactile internet, virtual reality and
other complex data and network intensive applications.

The work described in this paper is different from all
previous works since it proposes an approach to create and
evaluate a fog node for pathfinding systems in FPGA for real
world map locations stored on the cloud. The computation is in
the edge node itself (or in the vehicle), instead of in the cloud,
avoiding data communication and improving the performance
of IoT vehicle systems. Moreover, it proposes and evaluates a
pathfinding co-processor highlighting its benefits such as low
energy consumption and high performance.

3 The system’s architecture

The pathfinding system’s architecture is presented in Figure 1
together with the proposed FPGA accelerator/co-processor
for edge/fog computing services.

Figure 1 The edge/fog computing system using a Zynq system-
on-chip re-configurable FPGA chip augmented with
the pathfinding co-processor

Each edge node may work, for instance, as a fog node in the
OpenFog Reference Architecture Consortium (2017), which
is a consortium intended to help create and maintain the
hardware, software and system elements necessary for fog
computing. More specifically, each edge/fog node is an
autonomous node that can receive and send data to the cloud
or to another fog node. Therefore, each node can receive a
map from the cloud and compute a route on the system’s co-
processor or in the ARM processor.

The Zynq-FPGA architecture is split into Processing
System (PS) and Programmable Logic (PL) parts. The first
consists of an embedded ARM Cortex-A9 SoC, which can be

 An efficient pathfinding system in fpga for fog computing 215

programmed in software, while the latter is the re-configurable
logic, which can be programmed using hardware description
languages, such as VHDL, or high-level synthesis compilers
and tools which automatically produce the hardware
architecture.

3.1 The pathfinding co-processor

The pathfinding problem is often described using graph
theory and its related data structures. Thus, let = (,)G V E be

a graph such that V is the set of vertices, also known as
nodes, and E the set of edges. Pathfinding can be defined as
an algorithm that provides a path, i.e., a route, between a pair
of nodes (,)s t G , where s denotes the start and t the

target. In an autonomous car scenario, the nodes can represent
specific way-points and landmarks, while the edges represent
the possible paths between nodes. In general, the pathfinding
algorithm begins the search from a starting node s and, at
each loop iteration, expands the perimeter of the search based
on the neighbors of the node that is being visited.

Listing 1 presents the C/C++ code snippet for Dijkstra’s
algorithm implemented in Vivado HLS compiler. Given an
input graph, its size and a pair of start and goal coordinates,
the algorithm outputs the shortest path, if such path exists.
The code first presents static global arrays on lines 1 to 3,
which are often mapped onto the FPGA’s Block-RAMs.
The graph_m array stores the adjacency matrix of the
input graph coded as a uni-dimensional array. The two other
arrays, path and costs, hold the resulting path and the
costs associated with it, respectively. The adjacency array,
in particular, is the largest one, containing 250,000 positions
that represent an input graph of up to 500 nodes.
The limitation on the number of nodes in the graph is
due to the limited number of available BlockRAMs in the
FPGA. Thus, keeping the data inside the FPGA (using
BlockRAMs) is much faster than using the board’s external
memory resources (e.g., DDR memory) and enables parallel
access to many of the available BlockRAMs. Moreover,
BlockRAMs are usually scarce in FPGA architectures,
limited to a couple dozens of megabits. The ZC706 FPGA
board used in this work has a total amount of 19.1 Mb of
BlockRAM resources. Thus, working with an input graph of
1000 integer nodes (32-bits each) is unfeasible, as it would
require about 30 Mb of BlockRAM memory for a adjacency
matrix representation and, thus, would not fit in the 19.1 Mb
of available BlockRAMs. Besides, all the auxiliary arrays
that are needed during the algorithm’s execution would not
fit too. Further details on the co-processor’s resource
utilisation are given later in Section 4. Moreover, the graph
adjacency array receives its values from external memories,
either connected to the ARM host processor or inside it,
with the function parameter g_addr providing its starting
base memory address, as shown in line 17. Memory
functions like memcpy are specifically used in Vivado HLS
to indicate AXI (Advanced eXtensible Interface) bus burst
operation, as will be described in Sub-section 3.2.

Listing 1: Dijkstra vivado HLS implementation

Besides the static arrays, lines 22 and 23 present array-
backed lists that are used by the algorithm’s main loop. The
first list (perim) stores the nodes perimeter, i.e., the ones
that are still open to evaluation. The second (neig) stores
the neighbors of the node that is currently under assessment.
Each list is often mapped onto FPGA Distributed RAMs.
Even though the code for the lists is not presented (for the
sake of simplicity), it suffices to say that each can hold up to
500 integer elements, i.e., equivalent to the maximum
number of nodes of the input graph. Furthermore, the lists
allow the insertion of items with or without priorities,
meaning that an item can be inserted at any position in the
list depending on its priority, which can be an edge weight
or some other cost information. This behavior is what makes
each pathfinding algorithm more or less efficient in terms
of performance and usage of FPGA resources, especially
because inserting an item in the middle of the list requires
more steps to first determine the position and later on insert

216 A.S. Nery, A. da Costa Sena and L.S. Guedes

the item. On the other hand, taking elements from the
beginning or from the end of each list has an impact on the
search criteria of the pathfinding algorithm, often leading to
a faster path search. For instance, the Breadth First search is
the simplest pathfinding algorithm and does not consider
edge weight or any other information to insert nodes into
the lists. Thus, given a start and target nodes, the search
expands equally in all directions until the given target node
is reached or all nodes have been visited. The Greedy
algorithm, on the other hand, simply expands its search
based on the perimeter node with lowest edge weight at
each loop iteration, possibly resulting in a sub-optimal path,
while Dijkstra’s tends to prioritise the search towards all
perimeter nodes with low-cost edges. It is important to point
out that, among these algorithms, Dijkstra is the only one
that always produces the optimum solution (smallest path).
Finally, A* operates like Dijkstra. The key difference lies in
the use of a heuristic to guide the search towards the nodes
which are closest to the goal, avoiding the nodes which are
farthest from the goal. However, it may not produce the
optimum solution, which is the main reason for using
Dijkstra’s algorithm in this work. Figure 2 presents the co-
processor architecture and its AXI compatible buses.

Figure 2 The Zynq system-on-chip re-configurable architecture
augmented with the pathfinding accelerator using
AXI4-Full and AXI4-Lite interfaces. The depicted
shortest path starts at node s = 0 and ends at node t = 6

A detailed analysis of these four algorithms (Breadth First,
Greedy, A* and Dijkstra) was presented in our previous
workshop paper (Nery et al., 2017) that designed and
evaluated four efficient pathfinding co-processors for each
one of these algorithms. It showed that although Breadth
First and Greedy co-processors were slightly faster than
Dijkstra’s, most of the time they did not calculate the
optimum path. On the other hand, the performance of A*
algorithm was almost the same as Dijkstra’s but occupied
the largest area, limiting its performance (e.g., the number
of co-processors that could be used at the same time).

3.2 The co-processor interface

The PS-PL communication interface operates according to the
AXI protocol, version 4, which is part of the AMBA-4
specification (AXI Reference Guide, 2017). The PS available
interfaces are: 4 General Purpose (GP) AXI master/slave
ports, 4 High-Performance (HP) AXI slave ports and one
Acceleration Coherency (ACP) slave port. In general, the last
two interfaces (HP and ACP) are used for high-performance
burst transfers between the PS and PL, while the General
Purpose (GP) interfaces are used for control signals and
tolerable high-latency pieces of data. The proposed co-
processor’s interface connects to both GP and HP interfaces of
the PS. The co-processor is designed using Xilinx HLS
compiler, which transforms a C specification into an RTL
implementation suitable for running into Xilinx FPGAs, as
shown in Figure 3. In general, the HLS compiler maps C
functions onto VHDL entities or Verilog modules. Each
function is properly organised in the produced RTL hierarchy,
with the top-level function arguments translated into RTL I/O
ports, some arrays translated into BlockRAMs (or Distributed
RAMs) and loops remaining rolled by default. The AXI4
protocol interfaces supported by the HLS compiler include the
AXI4-Stream (s_axis and m_axis), AXI4-Lite (s_axilite) and
AXI4-Master (m_axi).

The AXI4-Stream protocol is the fastest because it can
transfer sequential streams of data, with no limitation on the
burst length. It is focused on a data-flow paradigm, where the
concept of an address is not present. Therefore, it requires a
Direct Memory Access (DMA) core on the PL-side connected
to a PS high-performance port, translating memory mapped
data to stream and vice-versa. The DMA is controlled by the
PS over a memory-mapped AXI4-Lite interface, connected to a
PS general-purpose port. This protocol is not used in this work
due to the need to control the DMA, which would also make
the PS programming more difficult for non-experienced
embedded systems programmers.

Diversely, the AXI4-Lite is the slowest and should be
applied only for simple, low-throughput memory-mapped
communication. Thus, this protocol is used in this work to
signal the start of the co-processor and to gather status
information, indicating whether the core is idle or the
computation has finished. Also, it is used to set the base
address, the start and target nodes of the path that the core
needs to search.

The last protocol, AXI4-Master (also known as AXI4-
Full), provides high-performance memory-mapped PS-PL
data transfers. This protocol implements burst mode data
transfers, i.e., it can burst up to 256 words of data based on
a single memory-mapped address, connected to a PS high-
performance port. If more data need to be transferred, the
protocol must be granted bus access again in order to burst
more data. This protocol is used in this work to transfer the
adjacency array that represents the input graph nodes and
edges, as well as to transfer back to the host (ARM) the
resulting path. Using this protocol, the programmer just
needs to specify the base addresses of the adjacency array
and the resulting path to the core.

 An efficient pathfinding system in fpga for fog computing 217

Figure 3 The pathfinding general co-processor architecture and its HLS interface specification

Thus, given the base addresses and the compiler directives
(i.e., pragmas), as shown in the code snippet in Figure 3, the
HLS compiler implements an AXI4-Full interface port
which is used to transfer the adjacency array data into the
accelerator and the resulting path back to the pointed
memory address, possibly starting at a different base
address. Also, an AXI4-Lite interface port is implemented
to transfer the base addresses and the other parameters of
the function, such as the number of nodes, the start and
target nodes. The memcpy function call indicates that the
graph adjacency array (g_addr) and the resulting path
(p_addr) should be transferred in burst mode, whenever
possible. The HLS compiler automatically implements the
protocol handshaking signals, which greatly simplifies the
design process of each co-processor. Beyond that, it also
produces C-drivers that can be compiled and used by the
ARM programmer to control the co-processor. These
drivers are basically C function calls to control the
accelerator core (e.g., set start node, target node, adjacency
array base address, start execution, etc.).

4 Experimental analysis

The design process of the accelerator using HLS
encompasses three main development stages. First, the
co-processor must be specified in C/C++ using the HLS
compiler subset of ANSI-C allowed operations and
transformed into synthesisable VHDL (or Verilog) RTL
hardware description. The second stage is the architecture
specification, which connects the co-processor to the
processing system using different types of protocols (AXI4-
Lite, AXI4-Full and/or AXI4-Stream). The last stage is the
processing system development, which builds on top the
designed architecture.

Performance, circuit-area and energy consumption results
were analysed in a Xilinx Zynq-7000 FPGA (XC7Z045-
FFG900–2 SoC) within Xilinx ZC706 Development Kit. The
input graphs are based on popular locations in Rio de Janeiro
gathered from the OpenStreeMaps database (OpenStreet Map
contributors, 2017) using OSMNX python library (Boeing,
2016). Each graph has been simplified to its corresponding
undirected graph representation, because OpenStreetMap not
only include intersections, but also they include all the points
along a single street segment where the street curves. Although
the curves and the direction of the streets are important aspects
for autonomous vehicles such as cars and buses, the undirected
streets provide important and relevant circuit-area, performance
and energy-consumption results, especially because every edge
of each node must be analysed, while in the directed version
only the outgoing edges would need to be analysed. Thus, the
undirected analysis provides worst case results in terms of
execution time. Besides, each graph is limited to 500 nodes,
based on a radius parameter given a pair of latitude and
longitude points. This limitation is due to the FPGA’s finite
number of resources, such as Block-RAMs and Distributed-
RAMs. The vertices representing curves have an impact on the
number of required nodes and, thus, BlockRAM resources.
Despite that, considering curves vertices is just a matter of
input representation and would require no modification of the
co-processor design. The number of edges in the graph is not
limited, which means that the input graph can be a complete
graph, i.e., when every pair of distinct vertices is connected by
a unique edge. On the other hand, the more edges the graph
contains the wider the array-backed lists need to be in order to
accommodate longer paths.

4.1 Performance analysis

In the first experiment set, we evaluate the performance of
the proposed accelerator when executing in the FPGA in

218 A.S. Nery, A. da Costa Sena and L.S. Guedes

contrast to executing the same algorithm using the ARM
microprocessor, while also varying the start and end nodes
in order to produce paths with increasingly higher costs. The
route cost is the distance (in metres) from one node to
another. This is already provided by the street maps data
format and is used by Dijkstra’s algorithm to determine the
cheapest route in terms of distance. Higher cost paths are
produced given start and end nodes which are farther away
from each other. Such high cost paths are expected to
require more processing and energy than lower cost paths.
Table 1 presents the elapsed cycle count results regarding
both implementations. The number of cycles is assessed by
the ARM’s global counter, which increments a counting
register every two cycles. Thus, the values are adjusted to
twice the measured value. Moreover, the input graph
corresponds to Botafogo’s map Figure 8(c), with 481
nodes.

Table 1 Cycle counts measured from the ARM’s global timer
perspective

Cost ARM Co-Proc.

4576 13,118,026 5,224,018

3647 8,560,954 3,603,540

3005 6,067,660 2,745,106

2879 5,496,766 2,545,894

2405 4,380,572 2,145,530

1910 3,089,364 1,677,786

1028 864,742 929,478

494 277,200 737,352

137 79,696 673,076

The speedups of the co-processor execution against the
ARM can be seen in Figure 4. It is possible to observe that
the ARM microprocessor executes Dijkstra’s shortest path
algorithm faster than co-processor does for small distances,
i.e., nodes which are located close to each other (around
1km or less). On the other hand, as the distance increases,
the co-processor is faster than the micro-processor. This
indicates that the more processing needs to be done, the

better is the co-processor’s speedup in comparison to the
ARM, which is expected in most hardware accelerators due
to the cost of transferring data in and out the co-processor.
Such costs are mitigated by the AXI4-Full burst mode
operation, which enables the transfer of bursts of data
between the ARM and its co-processor. Otherwise, the
communication costs become prohibitive.

Figure 4 Speedups of the co-processor with respect to the same
algorithm executed by the ARM alone

Further performance results are presented in Table 2, varying
the map region (latitude and longitude) and using random
start/goal locations. The radius parameter is used to control the
number of nodes to be considered by the pathfinding algorithm,
with the corresponding paths being presented in Figure 8. It is
possible to observe that the speedup varies as the considered
location changes, achieving from 2.41  to 2.9  speedup
for the Centro and Maracana input maps, depicted in
Figure 8(e) and Figure 8(f), respectively. Furthermore, notice
that despite Copacabana’s highest path cost, its speedup is
not among the highest. This is because the path cost does not
necessarily mean that the algorithm had to execute more steps,
except for the results presented previously in Figure 4,
as the start/goal points were indeed selected in a manner
to produce results with more nodes along the path as the
distance increases. Thus, the cost indicates the path’s length in
meters, meaning in fact that one path is longer or shorter than
another, but not actually more or less costly in terms of clock
cycles.

Table 2 Performance results for different locations in Rio de Janeiro, thus varying the map location coordinates (latitude and
longitude), as well as the considered region radius

Name Lat. Long. Start Goal Nodes Radius Cost ARM Co-Proc. Speedup

Copacabana –22.9672 –43.1874 193 134 442 1500 4538 13,097,424 5,214,976 2.51

Lagoa –22.9719 –43.2119 262 211 451 1400 3288 12,761,352 4,889,296 2.61

Botafogo –22.9502 –43.1844 211 421 481 1400 4044 16,989,890 6,330,332 2.68

Gávea –22.98169 –43.23947 11 300 490 2000 4019 16,229,548 6,027,752 2.69

Centro –22.9033 –43.1862 23 430 432 1000 2146 11,577,490 4,800,368 2.41

Maracana –22.9120 –43.2301 344 24 482 1200 3807 16,852,114 5,818,882 2.90

 An efficient pathfinding system in fpga for fog computing 219

4.2 Energy requirement analysis

One of the main advantages of using a co-processor oriented
design is its lower power requirements compared to general-
purpose processors in hardware, as can be seen in Figure 5. The
processing system (named PS7) is the most power-hungry part,
being responsible for almost half of the system’s power
requirements. On the other hand, the programmable logic
(FPGA) is responsible for about 32% of the required power.
Figure 6 presents the dynamic energy consumption analysis for
the Processing System (PS7) and programmable logic (Clocks,
Signals, Logic, BRAM and DSP). The energy consumption is
roughly estimated from the power report and the clock cycles
presented on Table 1, based on 5 ns clock period for the
programmable logic and 1.5 ns clock period for the processing
system. Besides, the clock cycles of the co-processor had to be
adjusted, because they represent the elapsed clock cycles from
the ARM’s global timer perspective. Thus, the number of clock

cycles of the co-processor is about
10

3
 of the ones measured by

the ARM. The results show that the co-processor is much more
efficient in terms of energy consumption in comparison to
using the ARM’s processing system of the Zynq FPGA,
especially for distant points. Actually, the energy consumption
of ARM’s processing monotonically increases with the
distance, while the energy consumption of the co-processor
remained almost constant.

Figure 5 FPGA power report resulting from the system’s
synthesis with 5 ns timing constraint, default toggle
rate of 12.5 and 0.5 static probability

Figure 6 FPGA dynamic energy consumption (10–3J)

4.3 Circuit-area analysis

When considering the different resources of the
programmable logic (FPGA), the BRAM was by far the
most used resource, as presented in Table 3 and Figure 7.
This is due to the fact that every array in the HLS
specification is translated to FPGA-specific BlockRAM
slices or implemented as Distributed RAMs using the
lookup tables that are distributed across the FPGA. The
HLS compiler and the Vivado synthesis tool decide how the
arrays should be implemented based on performance,
circuit-area and energy consumption trade-offs, which is a
well-known difficult multi-objective optimisation problem.
Most electronic design automation tools, such as the ones
used in this work, must rely on heuristics to overcome the
VLSI design complexity.

Table 3 FPGA resource utilisation

Resource Utilisation Available Utilisation (%)

LUT 4004 218,600 1.83

LUTRAM 342 70400 0.49

FF 4854 437,200 1.11

BRAM 259.5 545 47.61

DSP 4 900 0.44

Figure 7 FPGA occupancy results, with the BRAM being the
most used resource

Following the BRAM, the Look-Up Table (LUT) was the
second most used resource, while the Flip-Flops (FFs) were
the third. The LUT can be used to implement any logic
function required by the design, which explains its high
FPGA occupancy. The FFs are basic components of small
memory elements, such as registers. Thus, most existing
variables specified in HLS must have been translated to FFs,
while everything else was possibly translated to a logic
function implemented in LUT, such as arithmetic operations,
multiplexers, decoders, etc.

220 A.S. Nery, A. da Costa Sena and L.S. Guedes

Figure 8 Rio de Janeiro popular locations

 (a) Copacabana map, 442 nodes (b) Lagoa map, 451 nodes

(c) Botafogo map, 481 nodes

 An efficient pathfinding system in fpga for fog computing 221

Figure 8 Rio de Janeiro popular locations (continued)

 (d) Gávea map, 490 nodes (e) Centro map, 432 nodes

(f) Maracanã map, 482 nodes

5 Conclusions and ideas for future work

This paper presented an efficient pathfinding system for
edge/fog computing, augmented with a Dijkstra shortest
path co-processor suitable for FPGAs with embedded ARM
microprocessors using the Advanced Microcontroller Bus
Architecture (AMBA4) specification. The co-processor was
designed, implemented and evaluated in a Zynq FPGA from
Xilinx. Also, this paper analysed the feasibility of extending

the hardware of FPGA-based embedded systems to execute
pathfinding algorithms and to evaluate the efficiency of the
RTL hardware produced using Xilinx HLS compiler.

The results clearly show the benefits of using HLS tools
to build pathfinding co-processors, not only due to the
low-dynamic energy consumption but mainly due to its
high performance, being up to almost 3 faster than the
ARM microprocessor alone. Although the co-processor
could have been specified directly in hardware description

222 A.S. Nery, A. da Costa Sena and L.S. Guedes

languages, such as VHDL, the development time would
possibly be much longer, requiring many testing and
verification steps, as usual in any integrated circuit design
process. Therefore, especially for embedded systems based on
ARM micro-processor architecture, the adoption of co-
processors can allow the development of more complex
applications without the fear of harming its performance and
stalling it. Furthermore, the specification of a co-processor
using HLS improves the portability of the hardware accelerator
and reduces its time-to-market, enabling its implementation in
different, more capable FPGA devices, which could possibly fit
more than three co-processors and larger graphs.

Although the input graphs are now limited to 500 nodes,
the edge/fog node of the edge/fog computing architecture
can be placed in a geographic region which can be fit onto
the accelerator. Thus, autonomous vehicles inside such
regional area would have their routes computed by the edge
accelerator, closer to the vehicles, instead of computing
them on distant cloud services. The pathfinding system can
be embedded into the autonomous vehicle system itself,
enabling them to communicate to other edge node vehicles
or edge stations too. Besides, newer FPGAs can possibly
fit more resources, enabling the computation of paths on
graphs based on larger regions.

In the future, the co-processor will be implemented on the
FPGA chip of an Alpha-Data PCI-Express board, which
is equipped with SATA interfaces that allows the
communication to a SSD disk, where the large-scale graphs
will sit. Also, we plan to include an AXI4-Stream interface
for faster PS-PL communication, enabling even higher-
throughput transfers of larger input graphs and paths, without
the burst length limit of AXI4 master interfaces. Also,
arbitrary precision data types will be introduced in the co-
processor specification in order to avoid the overhead of
specifying unnecessary bits, such as when an integer variable
is used to store boolean values. Moreover, the co-processor is
planned to be implemented directly in VHDL to better enable
us to optimise the RTL architecture produced by the HLS
compiler as well as to compare each architecture in terms of
its performance, circuit-area and energy consumption.

References

Ahn, S., Gorlatova, M. and Chiang, M. (2017) ‘Leveraging fog and
cloud computing for efficient computational offloading’,
Proceedings of the IEEE MIT Undergraduate Research
Technology Conference (URTC), IEEE, USA, pp.1–4.

Ai, Y., Peng, M. and Zhang, K. (2017) ‘Edge cloud computing
technologies for internet of things: a primer’, Digital
Communications and Networks, Vol. 4, No. 2, pp.77–86.

AXI Reference Guide (2017) Available online at:
https://www.xilinx.com/support/documentatio
n/ip_documentation/axi_ref_guide/v13_4/
ug761_axi_reference_guide.pdf (accessed on
08 August 2017).

Boeing, G. (2016) ‘Osmnx: new methods for acquiring,
constructing, analyzing, and visualizing complex street
networks’, Clinical Orthopaedics and Related Research,
Vol. 65, pp.126–139.

Bose, M. and Rajagopala, V. (2012) ‘Physics engine on
reconfigurable processor – low power optimized
solution empowering next-generation graphics on
embedded platforms’, Proceedings of the 17th International
Conference on Computer Games (CGAMES), IEEE, USA,
pp.138–142.

Cerina, L., Notargiacomo, S., Paccanit, M.G. and Santambrogio,
M.D. (2017) ‘A fog-computing architecture for preventive
healthcare and assisted living in smart ambients’, Proceedings
of the IEEE 3rd International Forum on Research and
Technologies for Society and Industry (RTSI), pp.1–6.

Clow, J., Tzimpragos, G., Dangwal, D., Guo, S., McMahan, J. and
Sherwood, T. (2017) ‘A pythonic approach for rapid
hardware prototyping and instrumentation’, Proceedings of
the 27th International Conference on Field Programmable
Logic and Applications (FPL), IEEE, Belgium, pp.1–7.

Consortium, O. (2017) Openfog Reference Architecture
For Fog Computing. Available online at: www.
OpenFogConsortium.org

Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. (2009)
Introduction to Algorithms, 3rd ed., The MIT Press.

Daga, M., Aji, A.M. and Feng, W-C. (2011) ‘On the efficacy
of a fused cpu+gpu processor (or apu) for parallel
computing’, Symposium on Application Accelerators in
High-Performance Computing, IEEE, USA, pp.141–149.

da Silva, P.V.F. and Villela, S.M. (2016) ‘Applying pathfinding
techniques on the development of an android game’,
Proceedings of SBGames 2016, SBC, pp.73–80.

Dijkstra, E.W. (1959) ‘A note on two problems in connexion with
graphs’, Numer. Math. Vol. 1, No. 1, pp.269–271.

Dolgov, D., Thrun, S., Montemerlo, M. and Diebel, J. (2009) Path
Planning for Autonomous Driving in Unknown Environments,
Springer, Berlin, Heidelberg, pp.55–64.

Dunkels, A. (2001) ‘Design and implementation of the lwip tcp/
ip stack’, Swedish Institute of Computer Science.

Fabry, J. and Sinclair, S. (2016) ‘Interactive visualizations
for testing physics engines in robotics’, Proceedings of the
IEEE Working Conference on Software Visualization
(VISSOFT), IEEE, USA, pp.106–110.

Hamano, T., Onosato, M. and Tanaka, F. (2016) ‘Performance
comparison of physics engines to accelerate house-collapsing
simulations’, Proceedings of the IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR),
IEEE, Switzerland, pp.358–363.

Hart, P.E., Nilsson, N.J. and Raphael, B. (1968) ‘A formal basis
for the heuristic determination of minimum cost paths’, IEEE
Transactions on Systems Science and Cybernetics, Vol. 4,
No. 2, pp.100–107.

Idris, M.Y.I., Bakar, S.A., Tamil, E.M., Razak, Z. and Noor, N.M.
(2009) High-speed shortest path co-processor design’,
Proceedings of the 3rd Asia International Conference on
Modelling Simulation, IEEE, Indonesia, pp.626–631.

Itoh, H. (2016) ‘Development of lego mindstorms model
construction system on omegaspace platform with physx
functions’, Proceedings of the 11th France-Japan 9th
Europe-Asia Congress on Mechatronics (MECATRONICS)
/17th International Conference on Research and Education in
Mechatronics (REM), IEEE, France, pp.38–43.

Jagadeesh, G.R., Srikanthan, T. and Lim, C.M. (2011) ‘Field
programmable gate array-based acceleration of shortest-path
computation’, IET Computers Digital Techniques, Vol. 5,
No. 4, pp.231–237.

 An efficient pathfinding system in fpga for fog computing 223

Kok, J., Gonzalez, L.F. and Kelson, N. (2013) ‘Fpga implementation
of an evolutionary algorithm for autonomous unmanned aerial
vehicle on-board path planning’, IEEE Transactions on
Evolutionary Computation, Vol. 17, No. 2, pp.272–281.

Koromilas, E., Stamelos, I., Kachris, C. and Soudris, D. (2017) ‘Spark
acceleration on fpgas: a use case on machine learning in pynq’,
Proceedings of the 6th International Conference on Modern
Circuits and Systems Technologies (MOCAST), pp.1–4.

Lee, C.Y. (1961) ‘An algorithm for path connections and its
applications’, IRE Transactions on Electronic Computers
Vol. EC-10, No. 3, pp.346–365.

Lee, E-K., Gerla, M., Pau, G., Lee, U. and Lim, J-H. (2016) ‘Internet
of vehicles: from intelligent grid to autonomous cars and
vehicular fogs’, International Journal of Distributed Sensor
Networks Vol. 12, No. 9, doi: 10.1177/1550147716665500.

Liu, C., Ji, X., Cao, Y., Xu, Q. and Chen, L. (2012) ‘Phusis cloth: a
physics engine for real-time character cloth animation’,
Proceedings of the 2nd International Conference on Computer
Science and Network Technology, IEEE, China, pp.1578–1582.

Liu, L., Chang, Z., Guo, X., Mao, S. and Ristaniemi, T. (2018)
‘Multiobjective optimization for computation offloading in fog
computing’, IEEE Internet of Things Journal, Vol. 5, No. 1,
pp.283–294.

Jin, J., Yuan, D. and Zhang, H. (2018) ‘Virtual fog: a virtualization
enabled fog computing framework for internet of things’, IEEE
Internet of Things Journal, Vol. 5, No. 1, pp.121–131.

Menon, V.G. (2017) ‘Moving from vehicular cloud computing to
vehicular fog computing:issues and challenges’, International
Journal on Computer Science and Engineering (IJCSE), Vol. 9,
No. 2, pp.14–18.

Millington, I. and Funge, J. (2009) Artificial Intelligence for
Games, 2nd ed., CRC Press.

Nery, A.S., Sena, A.C. and Guedes, L.S. (2017) ‘Efficient
pathfinding co-processors for fpgas’, Proceedings of the
International Symposium on Computer Architecture and High
Performance Computing Workshops (SBAC-PADW)’, IEEE,
Brazil, pp.97–102.

OpenStreetMap contributors (2017) Planet dump. Available online at:
https://planet.osm.org, https://www.openstreetmap.org

Tan, T.H., Ooi, C.Y. and Marsono, M.N. (2017) ‘hpfog: a fpga-
based fog computing platform’, Proceedings of the
International Conference on Networking, Architecture, and
Storage (NAS), IEEE, China, pp.1–2.

Togelius, J. and Yannakakis, G.N. (2016) ‘General general game
AI’, Proceedings of the IEEE Conference on Computational
Intelligence and Games (CIG)’, IEEE, Greece, pp.1–8.

Uliana, D., Kepa, K. and Athanas, P. (2013) ‘Fpga-based hpc
application design for non-experts’, Proceedings of the
International Symposium on Rapid System Prototyping
(RSP)’, pp.9–15.

Umuroglu, Y., Morrison, D. and Jahre, M. (2015) ‘Hybrid breadth-
first search on a single-chip fpga-cpu heterogeneous
platform’, Proceedings of the 25th International Conference
on Field Programmable Logic and Applications (FPL), IEEE,
UK, pp.1–8.

Vaughn-Nichols, S.J. (2009) ‘Vendors draw up a new graphics-
hardware approach’, Computer, Vol. 42, No. 5, pp.11–13.

Vivado (2017) Ultrafast high-level productivity design methodology
guide. Available online at: https://www.xilinx.com/
support/documentation/sw_manuals/ug1197-
vivado-high-level-productivity.pdf (accessed on
08 August 2017).

Yang, H. (2008) ‘Floating-point reconfiguration array processor
for 3d graphics physics engine’, Proceedings of the Asia and
South Pacific Design Automation Conference, IEEE
Computer Society Press, USA, pp.283–283.

Yeh, T.Y., Faloutsos, P., Patel, S.J. and Reinman, G. (2007)
‘Parallax: an architecture for real-time physics’, SIGARCH
Computer Architecture News, Vol. 35, No. 2, pp.232–243.

Zhou, S., Chelmis, C. and Prasanna, V.K. (2016) ‘High-throughput
and energy-efficient graph processing on fpga’, Proceedings
of the IEEE 24th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM),
pp.103–110.

