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Abstract: Pathfinding algorithms are at the heart of several classes of applications, such as 
network appliances (routing) and autonomous vehicle navigation. Thus, this work aims at 
designing and evaluating an efficient pathfinding FPGA accelerator based on Dijkstra’s shortest 
path algorithm to mitigate the increasing network traffic problem at the edge of the network. The 
system is designed using Xilinx High-Level Synthesis (HLS) compiler and is implemented in the 
programming logic of a Xilinx Zynq FPGA, embedded with an ARM microprocessor which is 
not only in charge of controlling the co-processor but also in charge of lightweight TCP/IP 
network communication. Extensive performance, circuit-area, and energy consumption results 
show that the co-processor can find the shortest path about 2.5 times faster than the system’s 
ARM microprocessor, on a simulation scenario test case based on touristic locations in the city of 
Rio de Janeiro, acquired from the OpenStreetMap database. 

Keywords: pathfinding; FPGA accelerator; high-level synthesis; fog computing; edge computing. 

Reference to this paper should be made as follows: Nery, A.S. and da Costa Sena, A. and 
Guedes, L.S. (2019) ‘An efficient pathfinding system in FPGA for edge/fog computing’,  
Int. J. Grid and Utility Computing, Vol. 10, No. 3, pp.212–223. 

Biographical notes: Alexandre Solon Nery graduated in Computer Science from Universidade 
Católica de Brasília (2006), having received his MSc degree (2010) and DSc degree (2014) in 
Systems Engineering from Universidade Federal do Rio de Janeiro. He is currently acting on the 
following subjects: reconfigurable computing, distributed and parallel computing. 

Alexandre da Costa Sena graduated in Computer Science from Universidade Federal Fluminense 
(1995), having received his MSc degree (2000) and DSc degree (2008) in Computer Science 
from Universidade Federal Fluminense. His research interests include parallel computing, high-
performance computing, fog computing and dynamic scheduling. 

Leandro S. Guedes graduated in Computer Science from Universidade Federal de Pelotas (2013), 
having received his MSc degree (2016) in Computer Science from Universidade Federal do Rio 
Grande do Sul. He is currently acting on the following subjects: computer graphics, information 
visualisation, human-computer interaction and distributed systems. 

 

 



 An efficient pathfinding system in fpga for fog computing 213 

This paper is a revised and expanded version of a paper entitled ‘Efficient Pathfinding  
Co-Processors for FPGAs’ presented at the ‘2017 International Symposium on Computer 
Architecture and High-Performance Computing Workshops (SBAC-PADW)’, Campinas, Brazil, 
17–20 October 2017. 

 

 

1 Introduction 

The rapid development of pervasive computing and Internet 
of Things (IoT) applications poses several challenges (e.g., 
efficiency and low latency) on traditional centralised cloud 
computing systems that are the basis for most web services 
(Ai et al., 2017). To overcome such challenges, new 
technology is changing the centralised cloud computing 
architecture to edge devices on the network border, in a 
trend called fog or edge computing (Cerina et al., 2017;  
Li et al., 2018). Hence, while some functions are better  
suited for cloud computing, others are naturally more 
advantageous to be carried out by fog nodes (Liu et al., 
2018; Ahn et al., 2017). Thus, the focus has shifted to bring 
specialised computation and communication devices nearer 
to the user. Many modern embedded systems, such as 
smartphones and tablets, are already being equipped with 
in-house customised Multi-Processing Systems-on-Chip 
(MPSoC), often built around ARM multi-core architectures, 
like the Cortex-A53, A72 and A73 chips. These application-
specific integrated circuit systems include inside a single 
chip key advanced heterogeneous components specialised in 
media and communication processing, yielding higher 
efficiency and reduced energy consumption. 

Vendors of Field-Programmable Gate Arrays (FPGAs), 
such as Xilinx and Altera, have recently embedded ARM 
microprocessors into the programmable logic of their  
re-configurable chips, allowing the extension of the 
microprocessor’s basic functions. Combined with High-
Level Synthesis (HLS) compiling tools (Vivado, 2017; 
Clow et al., 2017; Uliana et al., 2013) that are able to 
translate C code to Register Transfer Level (RTL) Hardware 
Description Language (HDL), such as VHDL or Verilog, it 
is not only possible to quickly prototype novel hardware 
Intellectual Property (IP), but also to offload code execution 
to efficient and dedicated parallel hardware accelerators 
implemented on the FPGA-side of the computing system, 
further improving its overall efficiency. For instance, the 
Zynq architecture (Millington and Funge, 2009) is 
embedded with an ARM Cortex-A9 microprocessor, which 
is often used to run the least computation intensive part of 
the code, while the FPGA runs the high-performance 
demand and energy efficient part. 

Pathfinding, also known as path planning, is a class of 
algorithms that can be used to determine the sub-optimal 
route between a starting point and a goal. They can be used 
in a wide range of applications, such as in network 
appliances and games (Togelius and Yannakakis, 2016). 
Lately, pathfinding algorithms have an important role in the 
implementation of autonomous vehicles (Dolgov et al., 
2009). In most cases, tasks need to continuously seek for 
suitable routes in a graph which represents the paths, such 

as a map. Thus, the pathfinding algorithms should execute 
quickly enough to not stall the path planning program. 

This work extends on our previous workshop paper 
(Nery et al., 2017) and proposes an efficient pathfinding 
system in FPGA suitable for edge/fog computing services 
targeting autonomous vehicles applications. Differently, 
from our previous work, that had a random 10 10  lattice 
graph pre-loaded into each evaluated co-processor, we 
actually implemented an actual fog node that is able to 
receive a map from the cloud or other fog node and compute 
a route in its co-processor. The system consists of a Xilinx 
ZC706 development board equipped with a Zynq XC7Z045 
FPGA, different from the older model (XC7Z010) used in 
the previous work, allowing the analysis of larger input 
graphs. Moreover, the system’s programmable logic only 
implements Dijkstra’s shortest path algorithm (Dijkstra, 
1959), because we want to efficiently determine the best 
route from a given starting point to a given goal. Thus, 
Breadth-First Search (Lee, 1961), Greedy (Cormen et al., 
2009) and A* (Hart et al., 1968) pathfinding algorithms are 
not implemented. Also, the ARM microprocessor handles 
the communication part of the system on top of the 
FreeRTOS operating system, in order to allow the vehicle to 
download maps from the OpenStreeMap (OpenStreetMap 
contributors, 2017) database using the lightweight TCP/IP 
network stack (Dunkels, 2001). The aim is to design and 
evaluate specialised computing devices placed at the edge of 
the network to efficiently determine the best route in 
edge/fog computing architectures based on real map 
locations. 

The rest of this paper is organised as follows: Section 2 
describes the state-of-the-art related works. The system’s 
architecture is described in Section 3, which also explains 
the pathfinding algorithm implemented in the FPGA 
programmable logic. Extensive experimental results are 
presented in Section 4. Finally, Section 5 concludes and 
presents ideas for future work. 

2 Related work 

Hardware accelerators, such as GPUs and FPGAs, are often 
used to execute the most timing consuming parts of a specific 
application or group of applications, leaving the less critical 
part of the computation to the host micro-processor. They  
are often designed for applications with high potential for 
parallelism exploitation, such as physics simulation (Yeh et al., 
2007; Bose and Rajagopala, 2012; Yang, 2008), clothing (Liu 
et al., 2012), 3D-object collision (Hamano et al., 2016), 
model-based robotics (Itoh, 2016; Fabry and Sinclair, 2016) 
and others (Daga et al., 2011; Vaughn-Nichols, 2009). More 
recently, hardware accelerators are also being used in the 
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edge/fog computing context (Tan et al., 2017; Cerina et al., 
2017; Koromilas et al., 2017). 

Pathfinding is also a common operation found in artificial 
intelligence, networking and route planning applications, such 
as autonomous vehicles (Dolgov et al., 2009; Kok et al., 2013). 
An evaluation of pathfinding algorithms has been presented in 
da Silva and Villela (2016), which analyses the Breadth-First, 
Depth-First, Ordered, Greedy and A* algorithms on Android 
platforms. Results show that heuristics-based methods, such as 
A*, are more efficient in terms of execution time for games. 

An implementation of a FPGA Bellman-Ford pathfinding 
algorithm can be seen in Jagadeesh et al. (2011). The 
architecture distributes the input graph among RAMs of several 
Processing Elements (PEs) implemented on a Xilinx Virtex-5 
SX95-T FPGA, with each PE in the design being mapped to 
a node of the graph. It runs at 143 MHz for a 128 node and 
466 edges graph, taking around 2418 cycles to compute a 
path on such graph. While fast, the authors assume that the 
graph topology has already been supplied to each PE. Also, 
detailed information about the host processor architecture or 
the communication protocol used among the PEs is not 
provided, as well as energy consumption results, which 
makes it impossible to compare to the work presented here. 

A FPGA design for large-scale graph processing is 
presented in Zhou et al. (2016). The design uses large 
external memory for storing graph data and FPGA for 
acceleration. The parallel architecture in FPGA is used  
to saturate the external memory bandwidth and concurrently 
process multiple input data to increase throughput. 
Performance and energy consumption are measured in terms 
of Million Traversed Edges Per Second (MTEPS). Another 
FPGA design is presented in Umuroglu et al. (2015), 
targeting the Breadth-First search algorithm acceleration 
using hybrid FPGA-CPU processing on a range of synthetic 
small-world graphs. The hybrid approach is able to perform 
better than software-only, also in terms of MTEPS, on the 
ZedBoard platform. 

The work in Idris et al. (2009) describes an FPGA 
implementation of the A* algorithm, but it does not present 
several important results, such as execution time, circuit-
area and energy consumption. Also, only the heuristic cost 
function is implemented on the FPGA, while the rest is 
expected to run elsewhere. 

The work in Menon (2017) presents challenges and open 
problems to move from vehicular cloud computing to 
vehicular fog computing. It highlights that an intermediate 
fog layer between the cloud and the mobile devices can 
provide low latency, better QoS, improve the efficiency of 
the network, reduce energy consumption, among other 
advantages. 

On the other hand, the article in Lee et al. (2016) 
discusses the evolution of intelligent vehicle grid to an 
autonomous vehicular fog that are capable of making its 
own decisions about driving customers to their destinations. 
Since the urban fleet of vehicles is evolving from a 
collection of sensor platforms to the internet of autonomous 
vehicles the fog layer will be responsible to compute the  
 

huge amount of data produced in a feasible time. The article 
shows a vehicular fog model in detail and discusses the 
potential design perspective with highlights on autonomous 
vehicles for future research. 

A Reference Architecture for Fog Computing was 
defined in Consortium (2017) by the OpenFog Consortium 
that was founded by ARM, Cisco, Dell, Intel, Microsoft and 
Princeton University. According to this document unfettered 
cloud computing approaches are not able to support the 
growth of data provided by transportation, agriculture, 
visual security, wind farms, among others IoT projects. 
Therefore, the OpenFog architecture is the baseline to 
develop an open architecture fog computing environment, 
creating standards to enable interoperability in IoT, 5G, 
artificial intelligence, tactile internet, virtual reality and 
other complex data and network intensive applications. 

The work described in this paper is different from all 
previous works since it proposes an approach to create and 
evaluate a fog node for pathfinding systems in FPGA for real 
world map locations stored on the cloud. The computation is in 
the edge node itself (or in the vehicle), instead of in the cloud, 
avoiding data communication and improving the performance 
of IoT vehicle systems. Moreover, it proposes and evaluates a 
pathfinding co-processor highlighting its benefits such as low 
energy consumption and high performance. 

3 The system’s architecture 

The pathfinding system’s architecture is presented in Figure 1 
together with the proposed FPGA accelerator/co-processor 
for edge/fog computing services. 

Figure 1 The edge/fog computing system using a Zynq system-
on-chip re-configurable FPGA chip augmented with 
the pathfinding co-processor 

 

Each edge node may work, for instance, as a fog node in the 
OpenFog Reference Architecture Consortium (2017), which 
is a consortium intended to help create and maintain the 
hardware, software and system elements necessary for fog 
computing. More specifically, each edge/fog node is an 
autonomous node that can receive and send data to the cloud 
or to another fog node. Therefore, each node can receive a 
map from the cloud and compute a route on the system’s co-
processor or in the ARM processor. 

The Zynq-FPGA architecture is split into Processing 
System (PS) and Programmable Logic (PL) parts. The first 
consists of an embedded ARM Cortex-A9 SoC, which can be  
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programmed in software, while the latter is the re-configurable 
logic, which can be programmed using hardware description 
languages, such as VHDL, or high-level synthesis compilers 
and tools which automatically produce the hardware 
architecture. 

3.1 The pathfinding co-processor 

The pathfinding problem is often described using graph 
theory and its related data structures. Thus, let = ( , )G V E  be 

a graph such that V  is the set of vertices, also known as 
nodes, and E  the set of edges. Pathfinding can be defined as 
an algorithm that provides a path, i.e., a route, between a pair 
of nodes ( , )s t G , where s  denotes the start and t  the 

target. In an autonomous car scenario, the nodes can represent 
specific way-points and landmarks, while the edges represent 
the possible paths between nodes. In general, the pathfinding 
algorithm begins the search from a starting node s  and, at 
each loop iteration, expands the perimeter of the search based 
on the neighbors of the node that is being visited. 

Listing 1 presents the C/C++ code snippet for Dijkstra’s 
algorithm implemented in Vivado HLS compiler. Given an 
input graph, its size and a pair of start and goal coordinates, 
the algorithm outputs the shortest path, if such path exists. 
The code first presents static global arrays on lines 1 to 3, 
which are often mapped onto the FPGA’s Block-RAMs. 
The graph_m array stores the adjacency matrix of the 
input graph coded as a uni-dimensional array. The two other 
arrays, path and costs, hold the resulting path and the 
costs associated with it, respectively. The adjacency array, 
in particular, is the largest one, containing 250,000 positions 
that represent an input graph of up to 500 nodes.  
The limitation on the number of nodes in the graph is  
due to the limited number of available BlockRAMs in the 
FPGA. Thus, keeping the data inside the FPGA (using 
BlockRAMs) is much faster than using the board’s external 
memory resources (e.g., DDR memory) and enables parallel 
access to many of the available BlockRAMs. Moreover, 
BlockRAMs are usually scarce in FPGA architectures, 
limited to a couple dozens of megabits. The ZC706 FPGA 
board used in this work has a total amount of 19.1 Mb of 
BlockRAM resources. Thus, working with an input graph of 
1000 integer nodes (32-bits each) is unfeasible, as it would 
require about 30 Mb of BlockRAM memory for a adjacency 
matrix representation and, thus, would not fit in the 19.1 Mb 
of available BlockRAMs. Besides, all the auxiliary arrays 
that are needed during the algorithm’s execution would not 
fit too. Further details on the co-processor’s resource 
utilisation are given later in Section 4. Moreover, the graph 
adjacency array receives its values from external memories, 
either connected to the ARM host processor or inside it, 
with the function parameter g_addr providing its starting 
base memory address, as shown in line 17. Memory 
functions like memcpy are specifically used in Vivado HLS 
to indicate AXI (Advanced eXtensible Interface) bus burst 
operation, as will be described in Sub-section 3.2. 

 

Listing 1: Dijkstra vivado HLS implementation 

 

Besides the static arrays, lines 22 and 23 present array-
backed lists that are used by the algorithm’s main loop. The 
first list (perim) stores the nodes perimeter, i.e., the ones 
that are still open to evaluation. The second (neig) stores 
the neighbors of the node that is currently under assessment. 
Each list is often mapped onto FPGA Distributed RAMs. 
Even though the code for the lists is not presented (for the 
sake of simplicity), it suffices to say that each can hold up to 
500 integer elements, i.e., equivalent to the maximum 
number of nodes of the input graph. Furthermore, the lists 
allow the insertion of items with or without priorities, 
meaning that an item can be inserted at any position in the 
list depending on its priority, which can be an edge weight 
or some other cost information. This behavior is what makes 
each pathfinding algorithm more or less efficient in terms  
of performance and usage of FPGA resources, especially 
because inserting an item in the middle of the list requires 
more steps to first determine the position and later on insert  
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the item. On the other hand, taking elements from the  
beginning or from the end of each list has an impact on the  
search criteria of the pathfinding algorithm, often leading to 
a faster path search. For instance, the Breadth First search is 
the simplest pathfinding algorithm and does not consider 
edge weight or any other information to insert nodes into  
the lists. Thus, given a start and target nodes, the search 
expands equally in all directions until the given target node 
is reached or all nodes have been visited. The Greedy 
algorithm, on the other hand, simply expands its search 
based on the perimeter node with lowest edge weight at 
each loop iteration, possibly resulting in a sub-optimal path, 
while Dijkstra’s tends to prioritise the search towards all 
perimeter nodes with low-cost edges. It is important to point 
out that, among these algorithms, Dijkstra is the only one 
that always produces the optimum solution (smallest path). 
Finally, A* operates like Dijkstra. The key difference lies in 
the use of a heuristic to guide the search towards the nodes 
which are closest to the goal, avoiding the nodes which are 
farthest from the goal. However, it may not produce the 
optimum solution, which is the main reason for using 
Dijkstra’s algorithm in this work. Figure 2 presents the co-
processor architecture and its AXI compatible buses. 

Figure 2 The Zynq system-on-chip re-configurable architecture 
augmented with the pathfinding accelerator using 
AXI4-Full and AXI4-Lite interfaces. The depicted 
shortest path starts at node s = 0 and ends at node t = 6 

 

A detailed analysis of these four algorithms (Breadth First, 
Greedy, A* and Dijkstra) was presented in our previous 
workshop paper (Nery et al., 2017) that designed and 
evaluated four efficient pathfinding co-processors for each 
one of these algorithms. It showed that although Breadth 
First and Greedy co-processors were slightly faster than 
Dijkstra’s, most of the time they did not calculate the 
optimum path. On the other hand, the performance of A* 
algorithm was almost the same as Dijkstra’s but occupied 
the largest area, limiting its performance (e.g., the number 
of co-processors that could be used at the same time). 

3.2 The co-processor interface 

The PS-PL communication interface operates according to the 
AXI protocol, version 4, which is part of the AMBA-4 
specification (AXI Reference Guide, 2017). The PS available 
interfaces are: 4  General Purpose (GP) AXI master/slave 
ports, 4  High-Performance (HP) AXI slave ports and one 
Acceleration Coherency (ACP) slave port. In general, the last 
two interfaces (HP and ACP) are used for high-performance 
burst transfers between the PS and PL, while the General 
Purpose (GP) interfaces are used for control signals and 
tolerable high-latency pieces of data. The proposed co-
processor’s interface connects to both GP and HP interfaces of 
the PS. The co-processor is designed using Xilinx HLS 
compiler, which transforms a C specification into an RTL 
implementation suitable for running into Xilinx FPGAs, as 
shown in Figure 3. In general, the HLS compiler maps C 
functions onto VHDL entities or Verilog modules. Each 
function is properly organised in the produced RTL hierarchy, 
with the top-level function arguments translated into RTL I/O 
ports, some arrays translated into BlockRAMs (or Distributed 
RAMs) and loops remaining rolled by default. The AXI4 
protocol interfaces supported by the HLS compiler include the 
AXI4-Stream (s_axis and m_axis), AXI4-Lite (s_axilite) and 
AXI4-Master (m_axi). 

The AXI4-Stream protocol is the fastest because it can 
transfer sequential streams of data, with no limitation on the 
burst length. It is focused on a data-flow paradigm, where the 
concept of an address is not present. Therefore, it requires a 
Direct Memory Access (DMA) core on the PL-side connected 
to a PS high-performance port, translating memory mapped 
data to stream and vice-versa. The DMA is controlled by the 
PS over a memory-mapped AXI4-Lite interface, connected to a 
PS general-purpose port. This protocol is not used in this work 
due to the need to control the DMA, which would also make 
the PS programming more difficult for non-experienced 
embedded systems programmers. 

Diversely, the AXI4-Lite is the slowest and should be 
applied only for simple, low-throughput memory-mapped 
communication. Thus, this protocol is used in this work to 
signal the start of the co-processor and to gather status 
information, indicating whether the core is idle or the 
computation has finished. Also, it is used to set the base 
address, the start and target nodes of the path that the core 
needs to search. 

The last protocol, AXI4-Master (also known as AXI4-
Full), provides high-performance memory-mapped PS-PL 
data transfers. This protocol implements burst mode data 
transfers, i.e., it can burst up to 256 words of data based on 
a single memory-mapped address, connected to a PS high-
performance port. If more data need to be transferred, the 
protocol must be granted bus access again in order to burst 
more data. This protocol is used in this work to transfer the 
adjacency array that represents the input graph nodes and 
edges, as well as to transfer back to the host (ARM) the 
resulting path. Using this protocol, the programmer just 
needs to specify the base addresses of the adjacency array 
and the resulting path to the core. 
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Figure 3 The pathfinding general co-processor architecture and its HLS interface specification 

 

 

Thus, given the base addresses and the compiler directives 
(i.e., pragmas), as shown in the code snippet in Figure 3, the 
HLS compiler implements an AXI4-Full interface port 
which is used to transfer the adjacency array data into the 
accelerator and the resulting path back to the pointed 
memory address, possibly starting at a different base 
address. Also, an AXI4-Lite interface port is implemented 
to transfer the base addresses and the other parameters of 
the function, such as the number of nodes, the start and 
target nodes. The memcpy function call indicates that the 
graph adjacency array (g_addr) and the resulting path 
(p_addr) should be transferred in burst mode, whenever 
possible. The HLS compiler automatically implements the 
protocol handshaking signals, which greatly simplifies the 
design process of each co-processor. Beyond that, it also 
produces C-drivers that can be compiled and used by the 
ARM programmer to control the co-processor. These 
drivers are basically C function calls to control the 
accelerator core (e.g., set start node, target node, adjacency 
array base address, start execution, etc.). 

4 Experimental analysis 

The design process of the accelerator using HLS 
encompasses three main development stages. First, the  
co-processor must be specified in C/C++ using the HLS 
compiler subset of ANSI-C allowed operations and 
transformed into synthesisable VHDL (or Verilog) RTL 
hardware description. The second stage is the architecture 
specification, which connects the co-processor to the 
processing system using different types of protocols (AXI4-
Lite, AXI4-Full and/or AXI4-Stream). The last stage is the 
processing system development, which builds on top the 
designed architecture. 
 
 

Performance, circuit-area and energy consumption results 
were analysed in a Xilinx Zynq-7000 FPGA (XC7Z045-
FFG900–2 SoC) within Xilinx ZC706 Development Kit. The 
input graphs are based on popular locations in Rio de Janeiro 
gathered from the OpenStreeMaps database (OpenStreet Map 
contributors, 2017) using OSMNX python library (Boeing, 
2016). Each graph has been simplified to its corresponding 
undirected graph representation, because OpenStreetMap not 
only include intersections, but also they include all the points 
along a single street segment where the street curves. Although 
the curves and the direction of the streets are important aspects 
for autonomous vehicles such as cars and buses, the undirected 
streets provide important and relevant circuit-area, performance 
and energy-consumption results, especially because every edge 
of each node must be analysed, while in the directed version 
only the outgoing edges would need to be analysed. Thus, the 
undirected analysis provides worst case results in terms of 
execution time. Besides, each graph is limited to 500 nodes, 
based on a radius parameter given a pair of latitude and 
longitude points. This limitation is due to the FPGA’s finite 
number of resources, such as Block-RAMs and Distributed-
RAMs. The vertices representing curves have an impact on the 
number of required nodes and, thus, BlockRAM resources. 
Despite that, considering curves vertices is just a matter of 
input representation and would require no modification of the 
co-processor design. The number of edges in the graph is not 
limited, which means that the input graph can be a complete 
graph, i.e., when every pair of distinct vertices is connected by 
a unique edge. On the other hand, the more edges the graph 
contains the wider the array-backed lists need to be in order to 
accommodate longer paths. 

4.1 Performance analysis 

In the first experiment set, we evaluate the performance of 
the proposed accelerator when executing in the FPGA in  
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contrast to executing the same algorithm using the ARM  
microprocessor, while also varying the start and end nodes 
in order to produce paths with increasingly higher costs. The 
route cost is the distance (in metres) from one node to 
another. This is already provided by the street maps data 
format and is used by Dijkstra’s algorithm to determine the 
cheapest route in terms of distance. Higher cost paths are 
produced given start and end nodes which are farther away 
from each other. Such high cost paths are expected to 
require more processing and energy than lower cost paths. 
Table 1 presents the elapsed cycle count results regarding 
both implementations. The number of cycles is assessed by 
the ARM’s global counter, which increments a counting 
register every two cycles. Thus, the values are adjusted to 
twice the measured value. Moreover, the input graph 
corresponds to Botafogo’s map Figure 8(c), with 481 
nodes. 

Table 1 Cycle counts measured from the ARM’s global timer 
perspective 

Cost ARM Co-Proc. 

4576 13,118,026 5,224,018 

3647 8,560,954 3,603,540 

3005 6,067,660 2,745,106 

2879 5,496,766 2,545,894 

2405 4,380,572 2,145,530 

1910 3,089,364 1,677,786 

1028 864,742 929,478 

494 277,200 737,352 

137 79,696 673,076 

The speedups of the co-processor execution against the 
ARM can be seen in Figure 4. It is possible to observe that 
the ARM microprocessor executes Dijkstra’s shortest path 
algorithm faster than co-processor does for small distances, 
i.e., nodes which are located close to each other (around 
1km or less). On the other hand, as the distance increases, 
the co-processor is faster than the micro-processor. This 
indicates that the more processing needs to be done, the 

better is the co-processor’s speedup in comparison to the  
ARM, which is expected in most hardware accelerators due 
to the cost of transferring data in and out the co-processor. 
Such costs are mitigated by the AXI4-Full burst mode 
operation, which enables the transfer of bursts of data 
between the ARM and its co-processor. Otherwise, the 
communication costs become prohibitive. 

Figure 4 Speedups of the co-processor with respect to the same 
algorithm executed by the ARM alone 

 

Further performance results are presented in Table 2, varying 
the map region (latitude and longitude) and using random 
start/goal locations. The radius parameter is used to control the 
number of nodes to be considered by the pathfinding algorithm, 
with the corresponding paths being presented in Figure 8. It is 
possible to observe that the speedup varies as the considered 
location changes, achieving from 2.41  to 2.9  speedup  
for the Centro and Maracana input maps, depicted in 
Figure 8(e) and Figure 8(f), respectively. Furthermore, notice 
that despite Copacabana’s highest path cost, its speedup is 
not among the highest. This is because the path cost does not 
necessarily mean that the algorithm had to execute more steps, 
except for the results presented previously in Figure 4,  
as the start/goal points were indeed selected in a manner  
to produce results with more nodes along the path as the 
distance increases. Thus, the cost indicates the path’s length in 
meters, meaning in fact that one path is longer or shorter than 
another, but not actually more or less costly in terms of clock 
cycles. 

Table 2 Performance results for different locations in Rio de Janeiro, thus varying the map location coordinates (latitude and 
longitude), as well as the considered region radius 

Name Lat. Long. Start Goal Nodes Radius Cost ARM Co-Proc. Speedup 

Copacabana –22.9672 –43.1874 193 134 442 1500 4538 13,097,424 5,214,976 2.51 

Lagoa –22.9719 –43.2119 262 211 451 1400 3288 12,761,352 4,889,296 2.61 

Botafogo –22.9502 –43.1844 211 421 481 1400 4044 16,989,890 6,330,332 2.68 

Gávea –22.98169 –43.23947 11 300 490 2000 4019 16,229,548 6,027,752 2.69 

Centro –22.9033 –43.1862 23 430 432 1000 2146 11,577,490 4,800,368 2.41 

Maracana –22.9120 –43.2301 344 24 482 1200 3807 16,852,114 5,818,882 2.90 
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4.2 Energy requirement analysis 

One of the main advantages of using a co-processor oriented 
design is its lower power requirements compared to general-
purpose processors in hardware, as can be seen in Figure 5. The 
processing system (named PS7) is the most power-hungry part, 
being responsible for almost half of the system’s power 
requirements. On the other hand, the programmable logic 
(FPGA) is responsible for about 32% of the required power. 
Figure 6 presents the dynamic energy consumption analysis for 
the Processing System (PS7) and programmable logic (Clocks, 
Signals, Logic, BRAM and DSP). The energy consumption is 
roughly estimated from the power report and the clock cycles 
presented on Table 1, based on 5 ns clock period for the 
programmable logic and 1.5 ns clock period for the processing 
system. Besides, the clock cycles of the co-processor had to be 
adjusted, because they represent the elapsed clock cycles from 
the ARM’s global timer perspective. Thus, the number of clock 

cycles of the co-processor is about 
10

3
 of the ones measured by 

the ARM. The results show that the co-processor is much more 
efficient in terms of energy consumption in comparison to 
using the ARM’s processing system of the Zynq FPGA, 
especially for distant points. Actually, the energy consumption 
of ARM’s processing monotonically increases with the 
distance, while the energy consumption of the co-processor 
remained almost constant. 

Figure 5 FPGA power report resulting from the system’s 
synthesis with 5 ns timing constraint, default toggle 
rate of 12.5 and 0.5 static probability 

 

Figure 6 FPGA dynamic energy consumption (10–3J) 

 

 

4.3 Circuit-area analysis 

When considering the different resources of the 
programmable logic (FPGA), the BRAM was by far the 
most used resource, as presented in Table 3 and Figure 7. 
This is due to the fact that every array in the HLS 
specification is translated to FPGA-specific BlockRAM 
slices or implemented as Distributed RAMs using the 
lookup tables that are distributed across the FPGA. The 
HLS compiler and the Vivado synthesis tool decide how the 
arrays should be implemented based on performance, 
circuit-area and energy consumption trade-offs, which is a 
well-known difficult multi-objective optimisation problem. 
Most electronic design automation tools, such as the ones 
used in this work, must rely on heuristics to overcome the 
VLSI design complexity. 

Table 3 FPGA resource utilisation 

Resource  Utilisation Available Utilisation (%) 

LUT  4004 218,600 1.83 

LUTRAM  342 70400 0.49 

FF  4854 437,200 1.11 

BRAM  259.5 545 47.61 

DSP  4 900 0.44 

Figure 7 FPGA occupancy results, with the BRAM being the 
most used resource 

 

Following the BRAM, the Look-Up Table (LUT) was the 
second most used resource, while the Flip-Flops (FFs) were 
the third. The LUT can be used to implement any logic 
function required by the design, which explains its high 
FPGA occupancy. The FFs are basic components of small 
memory elements, such as registers. Thus, most existing 
variables specified in HLS must have been translated to FFs, 
while everything else was possibly translated to a logic 
function implemented in LUT, such as arithmetic operations, 
multiplexers, decoders, etc. 
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Figure 8 Rio de Janeiro popular locations 

 

  (a) Copacabana map, 442 nodes (b) Lagoa map, 451 nodes 

 

(c) Botafogo map, 481 nodes 
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Figure 8 Rio de Janeiro popular locations (continued) 

 

 (d) Gávea map, 490 nodes (e) Centro map, 432 nodes 

 

(f) Maracanã map, 482 nodes 

5 Conclusions and ideas for future work 

This paper presented an efficient pathfinding system for 
edge/fog computing, augmented with a Dijkstra shortest 
path co-processor suitable for FPGAs with embedded ARM 
microprocessors using the Advanced Microcontroller Bus 
Architecture (AMBA4) specification. The co-processor was 
designed, implemented and evaluated in a Zynq FPGA from 
Xilinx. Also, this paper analysed the feasibility of extending  
 
 
 

the hardware of FPGA-based embedded systems to execute 
pathfinding algorithms and to evaluate the efficiency of the 
RTL hardware produced using Xilinx HLS compiler. 

The results clearly show the benefits of using HLS tools 
to build pathfinding co-processors, not only due to the  
low-dynamic energy consumption but mainly due to its  
high performance, being up to almost 3  faster than the 
ARM microprocessor alone. Although the co-processor 
could have been specified directly in hardware description  
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languages, such as VHDL, the development time would  
possibly be much longer, requiring many testing and 
verification steps, as usual in any integrated circuit design 
process. Therefore, especially for embedded systems based on 
ARM micro-processor architecture, the adoption of co-
processors can allow the development of more complex 
applications without the fear of harming its performance and 
stalling it. Furthermore, the specification of a co-processor 
using HLS improves the portability of the hardware accelerator 
and reduces its time-to-market, enabling its implementation in 
different, more capable FPGA devices, which could possibly fit 
more than three co-processors and larger graphs. 

Although the input graphs are now limited to 500 nodes, 
the edge/fog node of the edge/fog computing architecture 
can be placed in a geographic region which can be fit onto 
the accelerator. Thus, autonomous vehicles inside such 
regional area would have their routes computed by the edge 
accelerator, closer to the vehicles, instead of computing 
them on distant cloud services. The pathfinding system can 
be embedded into the autonomous vehicle system itself, 
enabling them to communicate to other edge node vehicles 
or edge stations too. Besides, newer FPGAs can possibly  
fit more resources, enabling the computation of paths on 
graphs based on larger regions. 

In the future, the co-processor will be implemented on the 
FPGA chip of an Alpha-Data PCI-Express board, which  
is equipped with SATA interfaces that allows the 
communication to a SSD disk, where the large-scale graphs 
will sit. Also, we plan to include an AXI4-Stream interface 
for faster PS-PL communication, enabling even higher-
throughput transfers of larger input graphs and paths, without 
the burst length limit of AXI4 master interfaces. Also, 
arbitrary precision data types will be introduced in the co-
processor specification in order to avoid the overhead of 
specifying unnecessary bits, such as when an integer variable 
is used to store boolean values. Moreover, the co-processor is 
planned to be implemented directly in VHDL to better enable 
us to optimise the RTL architecture produced by the HLS 
compiler as well as to compare each architecture in terms of 
its performance, circuit-area and energy consumption. 
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