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Abstract—Stream processing applications have high-
demanding performance requirements that are hard to tackle
using traditional parallel models on modern many-core
architectures, such as GPUs. On the other hand, recent dataflow
computing models can naturally exploit parallelism for a
wide class of applications. This work presents an extension to
an existing dataflow library for Java. The library extension
implements high-level constructs with multiple command queues
to enable the superposition of memory operations and kernel
executions on GPUs. Experimental results show that significant
speedup can be achieved for a subset of well-known stream
processing applications: Volume Ray-Casting, Path-Tracing and
Sobel Filter.

Keywords—Dataflow, Heterogeneous Systems, High-
Performance Computing.

I. INTRODUCTION

Moore’s Law predicted that the number of transistors that
can be fit into an integrated chip would nearly double almost
every two years [1]. While such greater number of transistors
over the years enabled significant advances in the processor’s
microarchitecture, the transistor miniaturization trend led to
insulating and heat dissipation problems, prohibiting further in-
creases on the circuit’s clock frequency, responsible for most of
the performance improvements back then. Thus, chip designers
have since then focused on selling many-core architectures
to keep their business model alive. Parallel programming
quickly became a game-changing method to achieve high
performance on such modern parallel architectures, such as
General Purpose Graphics Processing Units (GPGPUs) and
Chip Multi-Processors (CMPs) [2]. However, building parallel
programs is not a trivial task. In fact, it often requires expertise
and many hours of hard work to fully optimize an application
to run on a particular parallel architecture.

The Dataflow [3] paradigm is a trending computation
model that can naturally exploit the existing parallelism in
applications. A dataflow program is described as a graph,
where vertexes represent tasks (or instructions) and edges
depict data dependency between tasks. Nodes will be fired
to run as soon as all their input operands become avail-
able, instead of following program order. This means that
independent node can potentially run in parallel if there are
available processing elements. Recent research proposes the
dataflow in different levels of abstraction and granularities
[4], [5], [6], [7], [8], [9], [10], [11], [12], as an efficient and
straightforward parallel programming model. Computational
units (from instructions to functions, or even entire programs)

are connected in a dependency graph allowing programmers
to harvest the potential of modern parallel systems

This work presents JSucuri, a dataflow programming li-
brary written in Java which extends the original Sucuri [13]
for Python. JSucuri aims to enable dataflow high-performance
computing on heterogeneous systems using CPU and GPU.
It has been implemented in Java as (i) an alternative to
writing dataflow programs other than in Python and (ii) due
to Java’s thread-oriented parallel programming model, making
it easier to share objects within JSucuri code. Moreover, the
management of threads is often cheaper in terms of processing
speed and usage of resources as they don’t require a separate
address space, although performance comparisons between the
two implementations are out of the scope of this work, being
left for future works. JSucuri extends the original Sucuri by
implementing the means to concurrent kernel execution and
memory operations in GPU via JavaCL [14]. In this way,
different nodes of the dataflow program can copy data in and
out of the GPU, as well as issue kernel executions, sharing the
same OpenCL context and command queues among them.

The rest of this work is organized as follows: Section
II presents and discusses the state-of-art dataflow libraries
and distributed solutions for heterogeneous computing using
CPU and GPU. Section III describes the JSucuri library and
its underlying architecture. Section ?? presents the stream
processing benchmark programs used in this work and Section
IV discusses the experimental results based on those programs.
Finally, Section V concludes this work and presents some ideas
for the future.

II. RELATED WORKS

Besides Sucuri [13], [15], other works [16] sought to
use the Dataflow model as a parallel programming model
using high-level languages constructs. However, these have not
included support for the use of GPUs nor for asynchronous
communication and concurrent kernel execution.

The work presented in [17] (rCUDA) implements a virtu-
alization framework for remote GPUs. It allows the usage of
Nvidia GPUs remotely, providing a virtualization service on
clusters. In this way, some nodes which have GPUs can be
accessed in a transparent way without the need to modify the
code, because of a dynamic library that translates CUDA [18]
calls. This framework supports version 8 of CUDA without the
graphical functions. Also, it supports Remote Direct Memory
Access (RDMA) through InfiniBand and TCP/IP networks.



The DistributedCL [19] framework is similar to rCUDA,
but it uses the existing OpenCL API to enable its use in a
distributed processing environment on different GPU vendors.
This framework creates the abstraction of a single OpenCL
platform. It assumes that the applications that use it can
perform asynchronous communication. Thus, the data can be
sent simultaneously while the commands for the execution
of the kernel are being executed. The use of asynchronous
communication together with the storage of several commands
before sending them through the network is pointed out as
responsible for the reduction in communication overhead.
Both rCUDA and DistributedCL have used asynchronous com-
munication to reduce communication overhead in distributed
environments. Furthermore, modern GPUs have features such
as concurrent kernel execution and data copy superposition.
Concurrent execution of a kernel can lead to an increase in
the throughput of programs that may benefit from this feature.

In this work, we implemented a Java-based dataflow library
inspired in Sucuri [13] to explore the concurrent execution of
kernels and memory copies, ranging from 1 to 6 command
queues, in order to verify if there’s been an increase in
the throughput of the application with concurrent execution
of kernels and memory operations. Each kernel represents
an iteration of a streaming application described using the
Dataflow model. We have explored the use of asynchronous
communication together with the Dataflow execution model
in a heterogeneous multi-core environment to increase the
parallelism exploitation using Dataflow and also by taking
advantage of the concurrent execution of kernels and data copy.

III. JSUCURI

The overall architecture of JSucuri is depicted in Fig.1,
where it is possible to observe some of the major components
of the library, such as the Scheduler, the Workers and the
application Dataflow Graph.

Most of the architectural components of JSucuri are imple-
mented exactly as in Sucuri, except for the Worker, which is
mapped onto Java threads instead of processes. Also, message
passing interface (MPI) support is not implemented. Each
worker thread lives on the same machine and shares the same
object reference to the operand queue and the dataflow graph.
While the operand queue is thread-safe, the graph is not,
which means that race conditions may occur if different node
functions are executing code on the same object reference at
the same time. Thus, caution must be taken to ensure that
different threads do not step on each other, i.e., do not execute
on the shared objects at the same time. One way to ensure
synchronization is to provide different instances of an object
to each node function.

The java library spin-off inherits the same class hierar-
chy of Sucuri. Because of that, the same dataflow program
described in Python can be described in Java, effortlessly,
with some minor differences specific to each programming
language. For instance, the function code that is handed to
each dataflow node to execute is specified as a Java abstract
class, so that the program of each node can be declared as
an anonymous class and instantiated at the same time, during
the dataflow program specification. The abstract class, named
NodeFunction, defines a single abstract method that should
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Fig. 1: The JSucuri Architecture. Each Worker is implemented
as a Java Thread. Functions are handed to each node of the
dataflow graph and they have scope access to the enclosing’s
class static variables, which is useful for sharing JavaCL
objects among node functions.

be overridden in order to specify the function that the node
should execute. Moreover, anonymous classes have scope ac-
cess to their outer class static attributes, which allows JavaCL
objects to be shared among node functions, enabling each
Worker to issue JavaCL commands independently. Besides,
JavaCL is thread-safe. Thus, if two or more threads call the
same JavaCL method, they will be synchronized.

Fig. 2 shows the dataflow graph for the Volume Ray-
Casting application and its JSucuri code snippet, with a
few nodes invoking the GPU through JavaCL. The graph is
composed of 5 feeder nodes and 4 nodes with node functions
assigned to each of them. The feeder nodes are the ones that
simply produce a value to other nodes. Feeder nodes have
their execution started immediately because they do not contain
input operands. All the subsequent nodes have their execution
started by a worker thread as soon as their input operands are
available, as follows:

• readVolumeNode: the node expects the volume
file path and the dimensions array to be produced
in its ports 0 and 1. The node function readVolume
is then executed with the respective input arguments
and produces the volume data (array of floats) to
copyInVolumeNode.

• copyInVolumeNode: with the volume data avail-
able, this node runs the assyncCopyIn function,
which uses the JavaCL context in the outer class
scope to enqueue the volume data copy into the GPU.
Once enqueued, it passes on JavaCL event objects to
the node responsible for kernel execution. The event



objects will be used to indicate when the kernel can
start its execution, i.e., whether the volume has been
copied already into the GPU or not.

• execKernelNode: having received the values from
the feeder nodes and the indication that the volume
data is available in the GPU, the node function
assyncKernel can trigger the kernel execution.
It is important to observe that before the execution
of the kernel there is a lot of operations that need
to be executed to read and compile kernel code,
which can be executed while the values are still being
copied to the GPU. Thus, it represents an example of
overlapping data and computation, which contributes
to increasing the overall system performance.

• copyOutVolumeNode: finally, the node function
assyncCopyOut waits for the kernel execution to
finish and enqueue the read of the resulting data from
the GPU.

Observe that the code presented in Fig. 2 is not complete
for the sake of simplicity. Also, this version of Volume Ray-
Casting is very simple, as it only processes a single volume.
Stream of volumes will be later described in Section IV.

Stream dataflow processing applications present a regular
flow of input data, with many processing iterations, as shown
in the dataflow graph depicted in Fig. 3, with many queues.
Independent iterations can be executed in parallel, with each
iteration using one queue. Thus, if N queues are available,
it means that N instances of the dataflow graph can be
executed concurrently. Even if multiple command queues are
used for a single OpenCL-enabled device, it is possible to
issue commands for copy operations and kernel execution for
concurrent execution.

IV. EXPERIMENTAL RESULTS

This section presents experimental results of performance
and memory consumption on a set of benchmark applica-
tions chosen for Stream Dataflow implementation in JSucuri:
Volume Ray-Casting, Path-Tracing and Sobel Filter. They are
relevant graphics processing applications with high-demanding
performance constraints that often benefits from the stream
processing model of computation.

The Volume Ray-Casting and Path-Tracing algorithms are
well-known 3-D rendering algorithms. The first is able to
render 3-D volume information captured from CT-Scan and
MRI machines, while the latter is able to render 3-D virtual
scenes with even more realistic light effects, including shadow
smoothing effects and indirect lighting, like 3-D animation
movies. Both algorithms operate by firing rays towards the
model to be rendered. However, the Path-Tracing algorithm
produces one or more secondary beams in different directions
from diffuse surfaces, while Volume Ray-Casting does not
produce secondary rays at all. Thus, the color of each pixel
in Path-Tracing is calculated by taking into account several
pieces of information gathered by each ray-object collision,
i.e., intersection, all over the 3-D scene.

The Sobel filter is an image processing algorithm used
to emphasize the edges of the elements (objects, people,
etc.) present in an image. So it is a widely used algorithm
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Fig. 2: Dataflow graph for the Volume Ray-Casting benchmark
and its JSucuri code snippet. Feeder nodes (with no input ports)
are presented in gray, while the other nodes are presented
in white. For the sake of simplicity, the code for each node
function is not presented, as well as some variables declaration
and initialization.
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Fig. 3: Stream dataflow programs present a regular flow of input data (readData #i), with many processing iterations. Using
multiple queues to issue OpenCL commands to the device increases data throughput and performance by issuing memory
operations and kernel execution in parallel.

in computer vision applications. The filter determines the
intensity value of each pixel by calculating the gradient vector
along the x and y axis. Thus, two convolution matrices are
used for each axis. In this dataflow implementation, the filter
is applied to a sequence of frames extracted from a movie to
reproduce the behavior of a stream application.

A stream dataflow graph was implemented for each bench-
mark application varying from 1 to 6 command queues.
Moreover, the number of JSucuri Workers varies from 2 to 12
(twice the number of command queues for each configuration).
This is to ensure that there will be enough Workers to issue
concurrent copies and kernels to the GPU. The baseline for
performance comparison is the sequential implementation of
each benchmark application. The experimental setup consists
of an AMD FX 8-core processor with 8GB of RAM, GeForce
750i Nvidia GPU, running Ubuntu 14.04 OS and Java Virtual
Machine (JVM) 1.6.

A. Performance Results

In general, regardless of the image resolution and number
of processed frames, it is possible to observe that the stream
dataflow applications perform better than their serial imple-
mentation when using around 3 command queues, achieving
about 8× and 9× speedup for Volume Ray-Casting and Sobel
stream dataflow algorithms, respectively, as shown in Fig. 4
and Fig. 5. Besides, Sobel performs better with 4 queues for
higher resolution images, possibly because it increases the
computational load of the algorithm, which is much lower than
that of the Volume Ray-Casting and Path-Tracing algorithms.

Beyond 3 queues or less the speedup tends to decrease
for most stream applications. The reason for such slowdown
is possibly due to the overhead of managing more queues
than actually necessary. Also, more queues mean that more
commands can be issued concurrently. However, the system’s
setup only disposes of a single GPU, possibly flooding it with
concurrent commands that in the end need to be synchronized
(serialized) by the thread-safe JavaCL API.

On the other hand, the Path-Tracing stream dataflow im-
plementation achieves the best speedup: around 645× faster
than its serial counterpart, as shown in Fig. 6. The reason

for such astonishing acceleration, especially when using less
queues, is because the algorithm’s rays can be processed
independently, often yielding almost linear speedup as more
processing elements are used in parallel, which explains why
the speedup is close to the number of CUDA-Cores available
in the GPU that is being used in the experiments. Also, the
Path-Tracing serial implementation is very naive, i.e., does not
implement any spatial subdivision techniques to optimize the

Fig. 4: Speedups for the Volume Ray-Casting stream process-
ing application in dataflow using up to 6 command queues and
producing up to 100 frames.



Fig. 5: Speedups for the Sobel filter stream processing applica-
tion in dataflow using up to 6 command queues and producing
up to 100 frames.

number of ray-object collision tests. Thus, any effort towards
making it parallel will be effective.

Moreover, each primary ray, i.e., camera ray, is sampled
2048 times and can bounce up to 8 times from one object to
another, which roughly yields a total of 1920×1080×2048×8
ray-collision tests per processed frame. Because of that amount
of work, it was not possible to measure the algorithm’s serial
and parallel execution times beyond 20 processed frames
of 1920 × 1080 pixels and 30 processed frames in lower
resolutions.

B. Memory Copy Results

The results presented in Fig. 7 show the total size of
memory copies in and out the GPU for varying numbers
of command queues. It is possible to observe that as more
queues are used the higher the total size of data that is being
transferred, for all benchmark applications. Also, higher image
resolutions collaborate to increase the total size of data copies,
because each image is produced inside the GPU’s global
memory and later on transferred to the host’s machine.

The volume ray-casting application is the one that used
memory the most: up to 600 Megabytes. This is due to the
3-D volume data that needs to be copied to the GPU memory
for processing. Each volume consists of 256×256×256 voxels
of 16-bits each, yielding 16 Megabytes per 3-D volume. Thus,

Fig. 6: Speedups for the Path-Tracing stream processing ap-
plication in dataflow using up to 6 command queues and
producing up to 30 frames.

using 6 queues means that up to 6 volumes can be copied to
the GPU concurrently. The rest of the data consists of several
arrays required for the algorithm’s kernel execution and the
respective rendered images at the specified resolution.

On the other hand, the path-tracing application is the one
that used memory the least: up to 150 Megabytes. Once more,
this is due to the 3-D scene data that needs to be copied to the
GPU. It consists of 9 spheres which are used to compose the
scene. Each sphere consumes no more than 416 Kilobits of
information. The rest of the data also consists of many arrays
required for the algorithm’s kernel execution and the respective
rendered images at the specified resolution.

V. CONCLUSION & IDEAS FOR FUTURE WORK

This work presented JSucuri, a dataflow programming
library for high-performance computing on heterogeneous sys-
tems using CPU and GPU. It implements high-level constructs
with multiple command queues to enable the superposition
of memory operations and kernel executions on GPUs using
JavaCL. A set of graphics processing applications was cho-
sen for Stream Dataflow implementation in JSucuri, yielding
significant speedups when using a configuration of multiple
command queues.

In the future, experimental results for more than one
GPU should be performed in order to evaluate actual parallel



Fig. 7: Memory copies in Megabytes to and from the GPU for
up to 6 command queues.

kernel execution besides concurrent kernel and memory copy
superposition. More benchmarks applications also needs to
be implemented using the stream dataflow model to further
experiment JSucuri on different classes of applications. Finally,
a message passing interface would allow nodes at a distinct
networks to transmit data in and out the available GPUs on
the system.
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