Efficient Pathfinding Co-processors for FPGAs

Alexandre S. Nery, Alexandre C. Sena and Leandro A. J. Marzulo
Dep. de Informética e Ciéncia da Computacdo

Instituto de Matematica e Estatistica - IME

Universidade do Estado do Rio de Janeiro - UERJ

Rio de Janeiro, Brazil
Email: {anery, asena, leandro}@ime.uerj.br

Abstract—Pathfinding algorithms are at the heart of several
classes of applications, such as network appliances (routing),
GPS navigation and autonomous cars, which are related to
recent trends in Artificial Intelligence and Internet of Things
(IoT). Moreover, advances in semiconductor miniaturization tech-
nology have enabled the design of efficient Systems-on-Chip
(SoC) devices, with demanding performance requirements and
energy consumption constraints. Such systems might include
Field Programmable Gate Arrays (FPGAs) to allow the design
of customized co-processors that yield lower power consumption
and higher performance. Therefore, this work aims at designing
and evaluating four efficient pathfinding co-processors, each
one implementing a different well-known pathfinding algorithm:
breadth-first, dijkstra, greedy and a-star. Each co-processor is
designed using Xilinx High-Level Synthesis (HLS) compiler and
is implemented in the programming logic of a Xilinx FPGA
embedded with an ARM microprocessor, which is in charge
of controlling the set of co-processors. Extensive performance,
circuit-area and power consumption results shows that each co-
processor can efficiently execute a pathfinding algorithm, paving
the way for novel dedicated accelerators.

I. INTRODUCTION

Many modern embedded systems, such as smartphones
and tablets, are equipped with in-house customized Multi-
Processing Systems-on-Chip (MPSoC), often built around
ARM multi-core architectures, such as Cortex-A9. This
application-specific integrated circuit design includes inside a
single chip key advanced components, like GPUs and commu-
nication modules, yielding higher efficiency and reduced power
consumption. More recently, vendors of Field-Programmable
Gate Arrays (FPGAs), such as Xilinx and Altera, have embed-
ded ARM microprocessors around the programmable logic of
their re-configurable chips, allowing the extension of the ARM
basic functions. Together with High-Level Synthesis (HLS)
compiling tools [1] that are able to translate C code to Register
Transfer Level (RTL) Hardware Description Language (HDL),
such as VHDL or Verilog, it is not only possible to quickly
prototype novel hardware components, but also to offload
code execution to efficient and dedicated parallel hardware
accelerators implemented on the FPGA side.

Pathfinding, also known as path planning, is a class of
algorithms that can be used to determine the (sub-)optimal
route between a starting point and a goal. They can be used in a
wide range of applications, such as in network appliances and
games [2]. Lately, pathfinding algorithms have an important
role in the implementation of autonomous vehicles [3]. In most
cases, tasks need to continuously seek for suitable routes in a

Leandro S. Guedes
Dep. de Informitica
Instituto Federal de Educacdo, Ciéncia e
Tecnologia de Mato Grosso do Sul - IFMS
Corumba4, Brazil
Email: leandro.guedes @ifms.edu.br

graph which represents the paths, such as a map. Thus, the
pathfinding algorithms should execute quickly enough to not
stall the path planning program.

In this paper, we propose four efficient pathfinding co-
processors suitable for FPGAs with embedded ARM micro-
processors. They were designed, implemented and evaluated
in a Zynq Field-Programmable Gate Array (FPGA) from
Xilinx [4]. The Zynq architecture is embedded with an ARM
Cortex-A9 microprocessor, which is often used to run the least
computation intensive part of the code, while the FPGA runs
the high-performance demand and power efficient part.

The aim of this paper is to show the feasibility of extending
the hardware of embedded devices to execute pathfinding
algorithms and to evaluate the efficiency of the RTL hard-
ware produced using Xilinx HLS compiler. Furthermore, our
implementations not only allow a fast execution of four dis-
tinct types of pathfinding algorithms but includes low energy
consumption. More importantly, more than one path can be
calculated in parallel as more co-processors can be fit into the
hardware design, allowing the development of more complex
applications in more than ever constrained embedded devices.

The rest of this paper is organized as follows: Section II
describes related works. The pathfinding algorithms imple-
mented in the co-processor are presented in Section III. Section
IV explains the hardware architecture and the pathfinding co-
processors implemented. Experimental results are presented in
Section V. Finally, Section VI concludes and presents ideas
for future work.

II. RELATED WORK

Hardware accelerators, such as GPUs and FPGAs, are
often used to execute the most timing consuming parts of a
specific application or group of applications, leaving the less
critical part of the computation to the host microprocessor.
They are often designed for applications with high-potential
for parallelism exploitation, such as physics simulation [5], [6],
[7], clothing [8], 3D-object collision [9], model-based robotics
[10], [11] and others [12], [13].

Pathfinding is also a common operation found in artificial
intelligence, networking and route planning applications, such
as autonomous vehicles [3], [14]. An evaluation of pathfinding
algorithms has been presented in [15], which analyzes the
Breadth-first, Depth-First, Ordered, Greedy and A* algorithms
on Android platforms. Results show that heuristics-based

(A) Breadth (B) Greedy (C) Dijkstra (D) A-Star

1 static int graph_m[10000]; static int graph_m[? 1 Ftatic int graph_m[10 ; static int graph_m[10000]

2 static int path[100];//init to -1 static int path[100];//init to -1 ptatic int path[100]; //init to -1 |static int path[100]; //init to -1
1| 3 static bool visited[100];//init to Fstatic bool visited[100];//init to Fptatic int costs[i //init to -1 |static int costs[100]; //init to -1

4 static int x[100];

5 void breadth(volatile int xaddr, void greedy(volatile int xaddr, void dijkstra(volatile int xaddr, static int y[100];
O - S int n.dnt s, dnt x) {.). iotn.dptos.dntt) L)oo L. int n, int s, int t)_{,

7 //AXI4 burst //AXI4 burst //AXI4 burst void astar(volatile int xaddr,
2.] 8 memcpy(graph_m, (const intx)addr, memcpy (graph_m, (const intx)addr, memcpy(graph_m, (const intx)addr, \ volatile int *x_addr,
19t nxknxsizeof (int)); . ____ nxn¥xsizeof(int)); nxnxsizeof(int)); K volatile int xy_addr,

116~ 77perimeter and

11 //neighbhors array-backed lists
1 list_t perim, neig;
put_item(&perim, s);

//perimeter and
//neighbors array-backed lists
list_t perim, neig;
put_item_prior(&perim,s,?);
"~ Yymain-toop” """
while (!is_empty(&perim)){
int v = get_item(&perim);
if (v == t) break; //early exit
neighborhood(&neig, &g, v);
for (int i = 0;i < neig.size;i++){
int n = neig.datalil;
if (!visited[n]) {
put_item(&perim, n);

//main-loop
while (!is_empty(&perim)){

neighborhood(&neig, &g, v);

int n = neig.datalil;
if (lvisited[n]) {
put_item_prior(&perim, n,

memcpy((intx)addr,path,
nxsizeof(int)); memcpy ((intx)addr,path,
nksizeof(int));

b

list_t perim, neig; *| memcpy(graph_m, (const intx)addr,

put_item_prior(&perim,s,?); n¥nxsizeof(int));
_..lcostsls) = 0; memcpy(x, (const intx)x_addr,

//main-1loop VN nxsizeof (int));

while (!is_empty(&perim)){ % | ‘memcpy(y, (const intx)y_addr,

int v = get_item_prior(&perim);
if (v == t) break; //early exit

for (int i = 0;i < neig.size;i++){

pathln] = v; edge_w(graph_m,v,n))
visited[n] = true; visited([n] = true;
path[n] = v;
}
328 e eeaaan R
//AXI4 burst 9

//perimeter and .
//neighbors array-backed lists \

//AXI4 burst

int v = get_item_prior(&perim);
if (v == t) break;//early exit
neighborhood(&neig, &g, v); s| //neighbors array-backed lists
for (int i = 0;i < neig.size;i++){| list_t perim, neig;
int n = neig.datali]; put_item_prior(&perim,s,9);
int new_cost = costs[v] + hcostsls] = 0 ...
edge_w(graph_m,v,n); //main-loop
if (costsIn] <0 || while (!is_empty(&perim)) {
new_cost < costs[n]) { int v = get_item_prior(&perim);
costs[n] = new_cost; if (v == t) break; //early exit
put_item_prior(&perim, n, neighborhood(&neig, &g, v);
new_cost); for(int i = 0;i < neig.size;i++){
path[n] = v; int n = neig.datalil;
int new_cost = costs[v] +
} edge_w(graph_m,v,n);
NE3 if (costs[n] < 0 |
J7AXI4 bursET Tt Y new_cost < costs[n]) {
memcpy((intx)addr,path, ' costs[n] = new_cost;
nksizeof(int)); . put_item_prior(&perim, n,
\ new_cost +
\ heuristic(n,t));
\ path[n] = v;
}

nxsizeof(int));

*2eecccrsenaccccccnccsccccanansa

//AXI4 burst
memcpy((intx)addr, path,
nxsizeof(int));

}

Fig. 1: Breadth-First Search (BFS), Greedy (GRD), Dijkstra (DIJ) and A-star (A*) pathfinding C++ snippets, compatible with
Xilinx Vivado HLS. Interface protocol synthesis directives are shown only in Fig. 3, for the sake of organization. Memory
function memcpy is used only to indicate AXI4 bus burst operation mode.

methods, such as A*, are more efficient in terms of execution
time.

An implementation of a FPGA Bellman-Ford pathfinding
algorithm can be seen in [16]. The architecture distributes the
input graph among adjacency RAMs of several Processing Ele-
ments (PEs) implemented on a Xilinx Virtex-5 SX95-T FPGA,
with each PE in the design being mapped to a node of the
graph. It runs at 143MHz for a 128 node and 466 edges graph,
taking around 2418 cycles to compute a path on such graph.
While fast, the authors assume that the graph topology has
already been supplied to each PE. Also, detailed information
about the host processor architecture or the communication
protocol used among the PEs is not provided, as well as energy
consumption results, which makes it impossible to compare to
the work presented here.

The work in [17] describes a FPGA implementation of the
A* algorithm, but it does not present several important results,
such as execution time, circuit-area and energy consumption.
Also, only the heuristic cost function is implemented on the
FPGA, while the rest is expected to run elsewhere.

III. PATHFINDING TECHNIQUES IN HLS

Let G = (V, E) be a graph such that V' is the set of vertices,
also known as nodes, and E the set of edges. Pathfinding can

be defined as an algorithm that provides a path, i.e., a route,
between a pair of nodes (s,?) € G, where s denotes the start
and ¢ the target. In an autonomous car scenario, the nodes can
represent specific way-points and landmarks, while the edges
represent the possible paths between nodes. In general, the
pathfinding algorithm begins the search from a starting node s
and, at each loop iteration, expands the perimeter of the search
based on the neighbors of the node that is being visited.

Fig. 1 depicts four panels (A,B,C and D), each one
presenting Vivado HLS compatible C/C++ snippet codes of
the aforementioned algorithms, respectively. The snippets are
further organized into five parts. Part 1 presents static global
arrays which are often mapped onto FPGA BlockRAMs. Most
arrays are power-on initialized, except for the graph adjacency
and resulting path arrays, which get their values from the
external DDR memory connected to the ARM host processor,
that provides the starting base memory address, as shown
in Part 2. Observe that memory functions like memcpy are
specifically used in Vivado HLS to indicate AXI4 bus burst
operation, as will be shown in Section IV. Moreover, the A*
specification includes two additional arrays and their external
base addresses. These arrays hold the (x,y) position of
each node and are used by the A* heuristic to compute the
Manhattan distance between a pair of nodes (s, t), as follows:

abs(x[s] — x[t]) + abs(y[s| — y[t]) (D

Besides the static arrays, Part 3 presents array-backed lists
that are used by the algorithm’s main loop, described in Part
4. The first list (perim) stores the nodes perimeter, i.e., the
ones that are still open to evaluation. The second (neig) stores
the neighbors of the node that is currently under assessment.
Each list is often mapped onto FPGA Distributed RAMs. Even
though the code for the lists is not presented (for the sake
of brevity), it suffices to say that each can hold up to 50
integer elements. Furthermore, the lists allow the insertion
of items with or without priorities, meaning that an item
can be inserted at any position in the list depending on its
priority, which can be an edge weight or some other cost
information. This behavior is what makes each pathfinding
algorithm more or less efficient in terms of performance and
usage of FPGA resources, especially because inserting an item
in the middle of the list requires more steps to first determine
the position and later on insert the item. On the other hand,
taking elements from the beginning or from the end of the each
list have an impact on the search criteria of each algorithm,
often leading to a faster path search. For instance, the Breadth
First Search (BFS) is the simplest pathfinding algorithm and
does not consider edge weight or any other information to
insert nodes into the lists. Thus, given a start and target nodes,
the search expands equally in all directions until the given
target node is reached or all nodes have been visited. The
Greedy (GRD) algorithm, on the other hand, simply expands
its search based on the perimeter node with lowest edge weight
at each loop iteration, possibly resulting in a sub-optimal path,
while Dijkstra (DIJ) tends to prioritize the search towards all
perimeter nodes with low-cost edges. It is important to point
out that, among these algorithms, Dijkstra is the only one that
produces the optimum solution (smallest path). Finally, A-star
(A*) operates like Dijkstra. The key difference lies in the use
of a heuristic to guide the search towards the nodes which are
closer to the goal, avoiding the nodes which are farther from
the goal.

Lastly, Part 5 presents the bus burst operation of the
resulting path back to the ARM host microprocessor, starting
on the same base address of the input adjacency array.

IV. THE CO-PROCESSOR ARCHITECTURE

The Zynq-FPGA architecture is split into Processing Sys-
tem (PS) and Programmable Logic (PL) parts, as shown in
Fig. 2. The first consists of an embedded ARM Cortex-A9
SoC, which can be programmed in software, while the latter
is the re-configurable logic, which can be programmed using
Hardware Description Languages, such as VHDL.

The PS-PL communication interface operates according to
the Advanced eXtensible Interface (AXI4) protocol, which
is part of the AMBA4 specification [18]. The PS available
interfaces are: 4x General Purpose (GP) AXI master/slave
ports, 4x High-Performance (HP) AXI slave ports and one Ac-
celeration Coherency (ACP) slave port. In general, the last two
interfaces (HP and ACP) are used for high-performance burst
transfers between the PS and PL, while the general purpose

Zynq FPGA
4 N\ 4
Processing Programmable Logic (PL)
System (PS)
Pathfinding Pathfinding
co-processor 0 co-processor N
ARM Full Lite Full Lite
M_AXI || S_AXI M_AXI || S_AXI
| M_GP |<——>(s At AXI Interconnect]
| S _HP |<——>(M e AXI Smart Connect]
N J N J
—
(N\
512 MBytes DDR3 SDRAM
(holds the program instructions, variables, arrays, etc.)
A\ J

Fig. 2: The Zynq System-on-Chip re-configurable architecture
augmented with pathfinding co-processors using AXI4-Full
and AXI4-Lite interfaces.

(GP) interfaces are used for control signals and tolerable high-
latency pieces of data. The proposed co-processors interface
connects to both GP and HP interfaces of the PS.

Each pathfinding co-processor is designed using Xilinx
HLS compiler, which transforms a C specification into a RTL
implementation suitable for running into Xilinx FPGAs, as
shown in Fig. 3. In general, the HLS compiler synthesizes C
functions into blocks in the RTL hiearchy, with the top-level
function arguments translated into RTL I/O ports, some arrays
translated into BlockRAMs (or Distributed RAMs) and loops
remaining rolled by default. The AXI4 protocol interfaces
supported by the HLS compiler include the AXI4-Stream
(axis), AXI4-Lite (s_axilite) and AXI4-Master (m_axi).

The AXI4-Stream protocol is the fastest because it can
transfer sequential streams of data, with no limitation on the
burst length. It is focused on a data-flow paradigm, where the
concept of an address is not present. Therefore, it requires a
Direct Memory Access (DMA) core on the PL-side connected
to a PS high-performance port, translating memory mapped
data to stream and vice-versa. The DMA is controlled by the
PS over a memory-mapped AXI4-Lite interface, connected to
a PS general purpose port. This protocol is not used in this
work due to the need to control the DMA, which would also
make the PS programming more difficult for non-experienced
embedded systems programmers.

Diversely, the AXI4-Lite is the slowest and should be
applied only for simple, low-throughput memory-mapped com-
munication. Thus, this protocol is used in this work to signal
the start of the co-processor and to gather status information,
indicating whether the core is idle or the computation has
finished. Also, it is used to set the base address, the start and
target nodes of the path that the core needs to search.

The last protocol, AXI4-Master (also known as AXI4-
Full), provides high-performance memory-mapped PS-PL data
transfers. This protocol implements burst mode data transfers,

Pathfinding Co-processor Architecture

(static int graph_m|[
static int path(

(Datapath Memory void pathfinder(volatile int *addr, int n, int s, int t) {
A
Distributed RAM /\ #pragma HLS INTERFACE m_axi depth= port=addr offset=slave
-visited array #pragma HLS INTERFACE s_axilite port=addr bundle=AXI_Litel
iahb HLS |#pragma HLS INTERFACE s_axilite port=n bundle=AXI_Litel
-heighbors array #pragma HLS INTERFACE s_axilite port=s bundle=AXI_Litel
L LUTs, FF, DSP48ET...) — \’ #pragma HLS INTERFACE s_axilite port=t bundle=AXI_Litel
t Block RAM #pragma HLS INTERFACE s_axilite port=return bundle=AXI_Litel
oC
-adjacency array //AXI4 burst (input adjacency array)
FSM Control Logic -path array memcpy(graph_m, (const intx)addr,n*n*sizeof(int));
Oq—'o -perimeter array y
—(O— rnatearray . || ———
gg costs array //-—-pathfinding algorithm here---
— @ @
N\ J) s
high low .
throughput throughput //AXI4 burst (resulting path array)
memcpy((int*)addr,path,n*sizeof(int));
Full Lite clk ¢)

1; B
1; //power-on init to -1

— M_AXI S_AXI

reset)
| S|

Fig. 3: The Pathfinding General Co-Processor Architecture and its HLS interface specification.

i.e., it can burst up to 256 words of data based on a single
memory-mapped address, connected to a PS high-performance
port. If more data needs to be transferred, the protocol must
be granted bus access again in order to burst more data. This
protocol is used in this work to transfer the adjacency array
that represents the input graph nodes and edges, as well as to
transfer back to the host (ARM) the resulting path. Using this
protocol, the programmer just needs to specify the address of
the adjacency array to the core.

Thus, given the base address xaddr and the compiler
directives (i.e., pragmas), as shown in the snippet code in
Fig. 3, the HLS compiler implements an AXI4-Full interface
port which is used to transfer the adjacency array data and
the resulting path back to the same address. Also, an AXI4-
Lite interface port is implemented to transfer the address
itself and to transfer the other parameters of the function,
such as the number of nodes, the start and target nodes. The
memcpy function call indicates that the graph adjacency array
(graph_m) should be transferred in burst mode, whenever
possible. The HLS compiler automatically implements the
protocol handshaking signals, which greatly simplifies the
design process of PS-PL co-processors. Beyond that, it also
produces C-Drivers that can be compiled and used by the
ARM programmer to control the co-processor. These drivers
are basically C function calls to control each pathfinding core
(e.g., set start node, target node, adjacency array base address,
start execution, etc.).

V. EXPERIMENTAL ANALYSIS

The design process of each co-processor using HL.S encom-
passes three main development stages. First, the co-processor
must be specified in C/C++ using the HLS compiler subset of
ANSI-C allowed operations and transformed into synthesizable
VHDL (or Verilog) RTL hardware description. The second
stage is the architecture specification, which connects the co-
processor to the processing system using different types of
protocols (AXI4-Lite, AXI4-Full and/or AXI4-Stream). The
last stage is the processing system development, which builds

on top the designed architecture. All co-processors presented
in this work had to go through all the previous stages of
development. All the experiments were executed in a Xilinx
Zyng-7000 FPGA (XC7Z010-1CLG400C) within Digilentinc
Zybo board [19]. The input graph is randomly generated and
limited to 100 nodes. This limitation is to ensure that more
than one accelerator can be fit into the FPGA, enabling the
evaluation of more than one path in parallel. The number of
edges is not limited, which means that the input graph can
be a complete graph, i.e., when every pair of distinct vertices
is connected by a unique edge. However, the more edges the
graph contains the wider the array-backed lists needs to be to
accommodate longer paths.

A. Performance analysis

In the first experiment set we evaluate the speedups of the
algorithms when executing in the FPGA. As can be seen in
Fig. 4, we did not only compare the speed of the algorithms in
the FPGA with respect to the execution in the ARM processor
but also executed up to three co-processors in the FPGA.
When executed with only one co-processor, the results were
very similar, with the Greedy algorithm being slightly better.
The Dijkstra algorithm is more computing intensive because it
calculates the optimum path, while the A* needs to compute
a heuristic (Manhattan distance) cost function to guide the
search, which harms its performance. More importantly, all
co-processors are almost twice faster when compared to the
ARM alone.

The performance gain is even better when we analyze
the results using two or three co-processors. For instance,
with two co-processors, all algorithms doubled performance,
except the Breadth co-processor, which increased two and
a half times the pathfinding performance. More interesting,
when executing with 3 co-processors, the performance of the
algorithms quadrupled. This performance leap possibly occurs
because the paths which are computed by the two extra co-
processors are smaller than the path computed by the first co-
processor. Moreover, it was not possible to fit a third A* with

co-processor, limiting its execution to a pair of co-processors.

HBreadth MEDikstra EGreedy HA* o 9
01° o8 o9

a2

9]
Py 295! > 16%
,&56 '\,.79’ T 3.3'&
[R

1 2 3

Number of co-processors

Fig. 4: Speedups of each co-processor with respect to the same
algorithm executed by the ARM alone. Notice that the third
A* co-processor could not be fit into the FPGA.

B. Circuit-area analysis

When considering the different resources of the pro-
grammable logic (FPGA), the BRAM was the most used
resource, as presented in Fig. 5. This is due to the fact the every
array in the HLS specification is translated to FPGA-specific
BlockRAM slices or implemented as Distributed RAMs using
the Lookup Tables that are distributed across the FPGA. The
HLS compiler and the Vivado synthesis tool decide how the
arrays should be implemented based on performance, circuit-
area and energy consumption trade-offs, which is a well-
known difficult multi-objective optimization problem. Most
electronic design automation tools, such as the ones used in
this work, must rely on heuristics to overcome the VLSI design
complexity.

Followed by the BRAM, the Look-Up Table (LUT) was the
second most used resource, while the Flip-Flops were the third.
The LUT can be used to implement any logic function required
by the design, which explains its high FPGA occupancy. The
Flip-Flops are basic components to small memory elements,
such as registers. Thus, most existing variables specified in
HLS must have been translated to FFs, while everything else
was possibly translated to a logic function implemented in
LUT, such as arithmetic operations, multiplexers, decoders,
etc.

Regarding the circuit-area occupied by each algorithm, the
BFS co-processor clearly occupies the smallest area, while A*
occupies the largest area. Due to the size of the area occupied
by the algorithm A*, it was only possible to fit up to two A*
co-processors, while for the others, it was possible to fit up to
three co-processors.

C. Power requirement analysis

One of the main advantages of using a co-processor ori-
ented design is its low energy cost. As can be seen in Fig. 6,
for all implementations the processing system (ARM) is the
most energy-consuming part (approximately 1.561 Watts for
all algorithms). On the other hand, the programmable logic
(FPGA) is responsible for less than 1/4 of the energy con-
sumed for all scenarios. The most efficient design was breadth,
consuming 2.03, when considering only one co-processor. The
main reason for such efficiency is because of the array-backed
lists perim and neig, which are used to store the list of

nodes that are being visited and the list of neighbors of each
node being visited, do not need to be sorted. Thus, inserting
and removing an item into and from theses lists takes O(1),
while sorted lists would have a worst-case time complexity of
O(n).

An interesting characteristic of the pathfinding co-
processors is that their energy consumption does not increase
proportionally with the increase of their use. For example, the
execution of three Dijkstra co-processors only increased the
energy consumption in 65%. More important, as was shown
in Fig. 4, the performance was four times better than with one
CO-processor.

VI. CONCLUSION & IDEAS FOR FUTURE WORK

This paper presented four efficient pathfinding co-
processors suitable for FPGAs with embedded ARM micropro-
cessors using the Advanced Microcontroller Bus Architecture
(AMBAA4) specification. The co-processors were designed, im-
plemented and evaluated in a Zynq Field-Programmable Gate
Array (FPGA) from Xilinx. Also, up to three co-processors
could fit into the FPGA, enabling the computation of up three
paths in parallel. Moreover, this paper analyzed the feasibility
of extending the hardware of FPGA-based embedded systems
to execute pathfinding algorithms and to evaluate the efficiency
of the RTL hardware produced using Xilinx HLS compiler.

The results clearly show the benefits of using HLS tools
to build pathfinding co-processors, not only due to the low
energy consumption (bellow 2.5 Watts) but mainly due to
its high performance, being up to 9x faster than the ARM
microprocessor alone, for an input graph of up to 100 nodes.
Although the co-processors could have been specified directly
in hardware description languages, such as VHDL, the de-
velopment time would possibly be much longer, requiring
many testing and verification steps, as usually in any integrated
circuit design process. Therefore, especially for embedded sys-
tems based on ARM microprocessor architecture, the adoption
of co-processors can allow the development of more complex
applications without the fear of harming its performance and
stalling it. Furthermore, the specification of a co-processor
using HLS improves the portability of the hardware accelerator
and reduces its time-to-market, enabling its implementation in
different, more capable FPGA devices, which could possibly
fit more than three co-processors and larger graphs.

In the future, each co-processor will include an AXI4-
Stream interface for faster PS-PL communication, enabling
even higher-throughput transfers of larger input graphs and
paths, without the burst length limit of AXI4 master interfaces.
Also, arbitrary precision data types will be introduced in the
co-processor specification in order to avoid the overhead of
specifying unnecessary bits, such as when an integer variable
is used to store boolean values. Moreover, each co-processor is
planned to be implemented directly in VHDL to better enable
us to optimize the RTL architecture produced by the HLS
compiler as well as to compare each architecture in terms of
its performance, circuit-area and energy consumption.

E|UyT ELUTRAM EFF BEBRAM HEDSP HEBUFG
100% 959
> 80%
g 60%
3 40%
o
O 20%
0%
Breadth Greedy Dijkstra A*
Number of Co-processors and their algorithms
Fig. 5: FPGA occupancy results. Only the main data values are displayed.
OPS7 M Clocks ESignals M Logic MBRAM EDSP [PL Static [5] T. Y. Yeh, P. Faloutsos, S. J. Patel, and G. Reinman, “Parallax:
2.5 An architecture for real-time physics,” SIGARCH Comput. Archit.
News, vol. 35, no. 2, pp. 232-243, Jun. 2007. [Online]. Available:
2.4 http://doi.acm.org/10.1145/1273440.1250691
23 [6] M. Bose and V. Rajagopala, “Physics engine on reconfigurable proces-
’ %] sor — low power optimized solution empowering next-generation graph-
2 __n . © | 2 | ics on embedded platforms,” in 2012 17th International Conference on
- 8 < Computer Games (CGAMES), July 2012, pp. 138-142.
E 2.1 — %— S— g— [7]1 H. Yang, “Floating-point reconfiguration array processor for 3d graphics
g o o physics engine,” in 2008 Asia and South Pacific Design Automation
= 2+ Conference, March 2008, pp. 283-283.
g [8] C. Liu, X. Ji, Y. Cao, Q. Xu, and L. Chen, “Phusis cloth: A physics
S 19 1§ engine for real-time character cloth animation,” in Proceedings of
(=} 2012 2nd International Conference on Computer Science and Network
1.8 1 Technology, Dec 2012, pp. 1578-1582.
17 - l [9] T. Hamano, M. Onosato, and F. Tanaka, “Performance comparison of
’ physics engines to accelerate house-collapsing simulations,” in 2016
16 - IEEE International Symposium on Safety, Security, and Rescue Robotics
: I I I I I I I I I I 2 (SSRR), Oct 2016, pp. 358-363.
15 - (e [ke [9 be (9 19 9 9 (4 [10] H. Itoh, “Development of lego mindstorms model construction system
1 2 3 1 2 3 1 2 3 1 2 on omegaspace platform with physx functions,” in 2016 11th France-
| | - | | Japan 9th Europe-Asia Congress on Mechatronics (MECATRONICS)
Breadth Greedy Dijkstra A* /17th International Conference on Research and Education in Mecha-
Number of Co-processors and their algorithms tronics (REM), June 2016, pp. 038-043.
Fig. 6: Power analysis (in Watts), with the X-axis representing [11] J. Fabry and S. Sinclair, “Interactive visualizations for testing physics

the number of co-processors per algorithm HLS implementa-
tion. Only data values above 0.1W are displayed.

ACKNOWLEDGMENTS

The authors would like to thank FAPERJ, CNPq and

CAPES for the financial support to this work. It is also
important to thank Xilinx for the donation of the licenses that
allowed the development of this work.

[1]

[2]

[3]

[4]

REFERENCES

“Ultrafast high-level productivity design methodology guide,”
https://www.xilinx.com/support/documentation/sw_manuals/
ug1197-vivado-high-level-productivity.pdf, Xilinx, accessed:
08-2017.

J. Togelius and G. N. Yannakakis, “General general game ai,” in 2016
IEEE Conference on Computational Intelligence and Games (CIG),
Sept 2016, pp. 1-8.

D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, Path Planning for
Autonomous Driving in Unknown Environments. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 55-64. [Online]. Available:
https://doi.org/10.1007/978-3-642-00196-3_8

“Zyng-7000 all-programmable technical reference
https://www.xilinx.com/support/documentation/user_guides/
ug585-Zynqg-7000-TRM.pdf, Xilinx, accessed: 08-08-2017.

08-

manual,”

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

engines in robotics,” in 2016 IEEE Working Conference on Software
Visualization (VISSOFT), Oct 2016, pp. 106-110.

M. Daga, A. M. Aji, and W. c. Feng, “On the efficacy of a fused
cpu+gpu processor (or apu) for parallel computing,” in 2011 Symposium
on Application Accelerators in High-Performance Computing, July
2011, pp. 141-149.

S. J. Vaughn-Nichols, “Vendors draw up a new graphics-hardware
approach,” Computer, vol. 42, no. 5, pp. 11-13, May 2009.

J. Kok, L. F. Gonzalez, and N. Kelson, “Fpga implementation of an
evolutionary algorithm for autonomous unmanned aerial vehicle on-
board path planning,” IEEE Transactions on Evolutionary Computation,
vol. 17, no. 2, pp. 272-281, April 2013.

P. V. F. da Silva and S. M. Villela, “Applying pathfinding techniques
on the development of an android game,” in Proceedings of SBGames
2016. SBC, 2016, pp. 73-80.

G. R. Jagadeesh, T. Srikanthan, and C. M. Lim, “Field programmable
gate array-based acceleration of shortest-path computation,” IET Com-
puters Digital Techniques, vol. 5, no. 4, pp. 231-237, July 2011.

M. Y. L. Idris, S. A. Bakar, E. M. Tamil, Z. Razak, and N. M. Noor,
“High-speed shortest path co-processor design,” in 2009 Third Asia
International Conference on Modelling Simulation, May 2009, pp. 626—
631.

“Axi reference guide,” https://www.xilinx.com/support/documentation/
ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.
pdf, accessed: 08-08-2017.

“Zybo reference manual,” https://reference.digilentinc.com/reference/

programmable-logic/zybo/reference-manual, Xilinx, accessed: 08-09-
2017.

