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Abstract: Stream processing applications have high-demanding performance requirements that are 
hard to tackle using traditional parallel models on modern many-core architectures, such as GPUs. 
On the other hand, recent dataflow computing models can naturally expose and facilitate the 
parallelism exploitation for a wide class of applications. Thus, instead of following the program 
order, different operations can be run in parallel as soon as their input operands become available. 
This work presents an extension to an existing dataflow library for Java. The library extension 
implements high-level constructs with multiple command queues to enable the superposition of 
memory operations and kernel executions on GPUs. Experimental results show that significant 
speedup can be achieved for a subset of well-known stream processing applications: Volume  
Ray-Casting, Path-Tracing and Sobel Filter. Moreover, new contributions in respect to concurrency 
analysis and the Stream processing parallel model in dataflow are presented. 
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1 Introduction 

Moore (2000) predicted that the number of transistors that can 
be fit into an integrated chip would nearly double almost every 
two years. While such greater numbers of transistors over  
the years enabled significant advances in the processor’s 
microarchitecture, the transistor miniaturisation trend led to 
insulation and heat dissipation problems, prohibiting further 
increases of the circuit’s clock frequency, responsible for most 
of the performance improvements back then. Thus, chip 
designers have since then focused on selling many-core 
architectures to keep their business model alive. Parallel 
programming quickly became a game-changing method to 
achieve high performance on such modern parallel 
architectures, such as General Purpose Graphics Processing 
Units (GPGPUs – Grasso et al. (2014)), Chip Multi-Processors 
(CMPs – Olukotun et al. (1996)) and custom-made accelerators 
in Field-Programmable Gate Arrays (FPGAs – Uliana et al. 
(2013)). However, building parallel programs is not a trivial 
task. In fact, it often requires expertise and many hours of hard 
work to fully optimise an application to run on a particular 
parallel architecture. 

The Dataflow paradigm first presented in Dennis and 
Misunas (1975) is a trending computation model that can 
naturally exploit the existing parallelism in applications. A 
dataflow program is described as a graph, where vertexes 
represent tasks (or instructions) and edges depict data 
dependency between tasks. Nodes will be fired to run as 
soon as all their input operands become available, instead of 
following the program order. This means that independent 
nodes can potentially run in parallel if there are available 
idle processing elements. Regarding edge/fog computing 
services, each dataflow graph node may also work, for 
instance, like a fog node in the OpenFog Reference 
Architecture (Consortium, 2017), which is a consortium 
intended to help create and maintain the hardware, software 
and system elements necessary for fog computing. 

Moreover, the recent development of embedded systems 
and Internet of Things (IoT) technologies created new 
efficiency and low latency challenges on traditional centralised 
cloud computing systems, as shown in Ai et al. (2017). To 
overcome such challenges, new technology is changing the 
centralised cloud computing architecture to edge devices on the 
network border, in a trend called fog or edge computing, as 
presented in Cerina et al. (2017) and Li et al. (2018). Hence, 
while some functions are better suited for cloud computing, 
others are naturally more advantageous to be carried out by fog 
nodes, as shown in Liu et al. (2018) and Ahn et al. (2017).  

Thus, the focus has shifted to bring specialised computation 
and communication devices nearer to the user. Each special 
computation unit, also known as hardware accelerator, is often 
different from the others, i.e., they have different architectures, 
programming models, etc. Hence, GPGPUs are a very popular 
kind of hardware accelerator in heterogeneous systems and is 
normally employed in highly demanding applications in terms 
of performance and throughput. Also, CMPs have multiple 
processing cores that can be used together for parallel 
processing. More recently, FPGAs have also become popular 
in high-performance computing and distributed applications, 
due to its energy efficiency, especially when compared to 
GPGPUs, as presented in Tan et al. (2017). However, 
efficiently using such heterogeneous accelerators is still a 
challenge. 

This work expands our previous workshop paper  
(Rocha et al., 2017) with new performance results and 
additional concurrency analysis for the Volume Ray-Casting 
implementation. Also, it further discusses the JSucuri 
dataflow programming library and runtime, as well as the 
state-of-the-art related works. JSucuri aims to enable dataflow 
high-performance computing on heterogeneous systems using 
CPU and GPU. Thus, ordinary dataflow nodes will be 
processed by the available CPU cores, while specialised 
dataflow nodes will be processed by the available GPU cores. 
It has been implemented in Java as (i) an alternative to 
writing dataflow programs other than in Python and (ii) due 
to Java’s thread-oriented parallel programming model, 
making it easier to share objects within JSucuri code. It is 
important to highlight that Java is still the leading 
programming language in the market according to TIOBE 
Software (2018), competing with C/C++ and Python. 
Moreover, the management of threads is often cheaper in 
terms of processing speed and usage of resources as they 
don’t require a separate address space. Hence, despite the use 
of shared memory for means of communicating, JSucuri 
dataflow library evaluates the potential of specialised stream 
processing in GPUs that can be present in fog/edge/in-situ 
nodes of a given application dataflow graph. JSucuri extends 
the original Sucuri by implementing concurrent kernel 
execution and memory copy operations in GPU via JavaCL 
(Chafik, 2015), as shown in Figure 1. In this way, different 
nodes of the dataflow program can copy data to a GPU and 
retrieve its expected results. Also, different nodes can  
issue kernel executions that share the same OpenCL context 
and command queues, enabling, for instance, parallel image 
processing of a stream of images. 
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Figure 1 Concurrent kernel execution and memory operations in 
GPU using JSucuri dataflow programming model 

 

The rest of this work is organised as follows: Section 2 presents 
and discusses the state-of-art Dataflow libraries and distributed 
solutions for heterogeneous computing using CPU and GPU. 
Section 3 describes the JSucuri library and its underlying 
architecture. Section 4 discusses the experimental results based 
on those programs. Finally, Section 5 concludes this work and 
presents some ideas for the future. 

2 Related works 

Recent research proposes dataflow processing in different 
levels of abstraction and granularities, as shown in Alves et al. 
(2011), Marzulo et al. (2014), Balaji (2015),Wozniak et al. 
(2013),Wilde et al. (2011), Matheou and Evripidou (2016), 
Giorgi et al. (2014), Duran et al. (2011) and Bosilca et al. 
(2012). In the last decade Dataflow has matured and developed 
into an efficient and straightforward parallel programming 
model, including edge/fog/in-Situ computing capabilities, as 
presented in Carvalho et al. (2017). In essence, any processing 
operation (e.g., instructions, functions, programs, etc.) can be 
connected to each other in a Dataflow dependency graph, thus 
allowing programmers to harvest the potential of modern 
parallel systems, as comprehensively presented in Alves et al. 
(2018). Besides Sucuri dataflow python library presented in 
Alves et al. (2014) and Silva et al. (2016), other works, such as 
in Bosboom et al. (2014), sought to use the Dataflow model as 
a parallel programming model using high-level languages 
constructs. However, these have not included support for the 
use of GPUs nor for asynchronous communication and 
concurrent kernel execution. 

The work presented in Peña et al. (2014), also known as 
rCUDA, implements a virtualisation framework for remote 
GPUs. It allows the usage of Nvidia GPUs remotely, 
providing a virtualisation service on clusters. In this way, 
some nodes which have GPUs can be accessed in a 
transparent way without the need to modify the code,  
 
 

because of a dynamic library that translates CUDA (Cuda C  
Programming Guide (n.d.)) calls. This framework supports 
version 8 of CUDA without the graphical functions. Also, it 
supports Remote Direct Memory Access (RDMA) through 
InfiniBand and TCP/IP networks.  

Tupinambá and Sztajnberg (2012) proposed the 
DistributedCL framework, which is similar to rCUDA. The 
framework uses an existing OpenCL API to enable its use in 
a distributed processing environment on different GPU 
vendors. This framework creates the abstraction of a single 
OpenCL platform. It assumes that the applications that use it 
can perform asynchronous communication. Thus, the data can 
be sent simultaneously while the commands for the execution 
of the kernel are being executed. The use of asynchronous 
communication together with the storage of several 
commands before sending them through the network is 
pointed out as responsible for the reduction in communication 
overhead. Both rCUDA and DistributedCL have used 
asynchronous communication to reduce communication 
overhead in distributed environments. Furthermore, modern 
GPUs have features such as concurrent kernel execution and 
data copy superposition. Concurrent execution of a kernel can 
lead to an increase in the throughput of programs that may 
benefit from this feature. 

In this work, we implemented a Java-based dataflow 
library inspired in Sucuri (Alves et al., 2014). Although every 
thread communication is handled via shared-memory, as will 
be described in Section 3, JSucuri dataflow library evaluates 
the potential of specialised stream processing using GPUs that 
may be present in fog/edge nodes of a given application 
dataflow graph. The library explores the concurrent execution 
of kernels and memory copies, ranging from one to six 
command queues, in order to increase the throughput of the 
application with concurrent execution of kernels and memory 
operations. Each kernel represents an iteration of a streaming 
application described using the Dataflow model. We have 
explored the use of asynchronous communication together with 
the Dataflow execution model in a heterogeneous multi-core 
environment to increase the parallelism exploitation using 
Dataflow and also by taking advantage of the concurrent 
execution of kernels and data copy. 

3 JSucuri 

The overall architecture of JSucuri is depicted in Figure 2, 
where it is possible to observe some of the major 
components of the library, such as the Scheduler, the  
Workers and the application Dataflow Graph. 

Most of the architectural components of JSucuri are 
implemented exactly as in Sucuri, except the Worker class, 
which is mapped onto Java threads instead of processes. Also, 
Message Passing Interface (MPI) support is not implemented. 
Each worker thread lives on the same machine and shares the 
same object reference to the operand queue and the dataflow  
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graph. While the operand queue is thread-safe, the graph is not,  
which means that race conditions may occur if different node  
functions are executing code on the same object reference at 
the same time. Thus, caution must be taken to ensure that 
different threads do not step on each other, i.e., do not execute 
on the shared objects at the same time. One way to ensure 
synchronisation is to provide different instances of an object to 
each node function. 

Figure 2 The JSucuri architecture. Each worker is implemented 
as a Java thread. Functions are handed to each node of 
the dataflow graph and they have scope access to the 
enclosing’s class static variables, which is useful for 
sharing JavaCL objects among node functions 

 

The proposed dataflow Java library inherits the same class 
hierarchy of Sucuri. Because of that, the same dataflow 
program described in Python can be described in Java, 
effortlessly, with some minor differences specific to each 
programming language. For instance, the function code that is 
handed to each dataflow node to execute is specified as a Java 
abstract class, so that the program of each node can be declared 
as an anonymous class and instantiated at the same time, during 
the dataflow program specification. The abstract class, named  
NodeFunction, defines a single abstract method that should 
be overridden in order to specify the function that the node 
should execute. Moreover, anonymous classes have scope 
access to their outer class static attributes, which allows JavaCL 
objects to be shared among node functions, enabling each 
Worker to issue JavaCL commands independently. Besides, 
JavaCL is thread-safe. Thus, if two or more threads call the 
same JavaCL method, they will be synchronised. 
 
 
 

Figure 3 Dataflow graph for the volume ray-casting benchmark 
and its JSucuri code snippet. Feeder nodes (with no 
input ports) are presented in gray, while the other nodes 
are presented in white. For the sake of simplicity, the 
code for each node function is not presented, as well as 
some variables declaration and initialisation 
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Figure 4 Stream dataflow programs present a regular flow of input data (readData #i), with many processing iterations. Using multiple 
queues to issue OpenCL commands to the device increases data throughput and performance by issuing memory operations and 
kernel execution in parallel 

Figure 3 shows the dataflow graph for the Volume Ray-Casting 
application and its JSucuri code snippet, with a few nodes 
invoking the GPU through JavaCL. The graph is composed of 
five feeder nodes and four nodes with node functions assigned 
to each of them. The feeder nodes are the ones that simply 
produce a value to other nodes. Feeder nodes have their execution 
started immediately because they do not contain input operands. 
All the subsequent nodes have their execution started by a worker 
thread as soon as their input operands are available, as follows: 

 readVolumeNode: the node expects the volume file 
path and the dimensions array to be produced in its ports 0 
and 1. The node function readVolume is then executed 
with the respective input arguments and produces the 
volume data (array of floats) to copyInVolumeNode.  

 copyInVolumeNode: with the volume data available, 
this node runs the  assyncCopyIn function, which uses 
the JavaCL context in the outer class scope to enqueue the 
volume data copy into the GPU. Once enqueued, it passes 
on JavaCL event objects to the node responsible for kernel 
execution. The event objects will be used to indicate when 
the kernel can start its execution, i.e., whether the volume 
has been copied already into the GPU or not.  

 execKernelNode: having received the values from 
the feeder nodes and the indication that the volume data is 
available in the GPU, the node function  assyncKernel 
can trigger the kernel execution. It is important to observe 
that before the execution of the kernel there is a lot of 
operations that need to be executed to read and compile 
kernel code, which can be executed while the values are 
still being copied to the GPU. Thus, it represents an 
example of overlapping data and computation, which 
contributes to increasing the overall system performance. 

 copyOutVolumeNode: finally, the node function 
assyncCopyOut waits for the kernel execution to finish 
and enqueue the read of the resulting data from the GPU. 

Observe that the code presented in Figure 3 is not complete for 
the sake of simplicity. Also, this version of Volume Ray-
Casting is very simple, as it only processes a single 3-D 
volume. Stream of volumes will be later described in Section 4. 

Stream dataflow graphs differ from regular dataflow 
graphs mainly because the stream applications present a 

regular flow of input data, with many processing iterations, 
as shown in the dataflow graph depicted in Figure 4, with 
many queues. For instance, image processing applications 
apply specific operations (e.g., filters) to each frame of a 
video stream. Each frame is often independent of each other 
and can be processed concurrently or in parallel, provided 
that there are available resources. Therefore, stream 
processing graphs seek to concurrently issue multiple 
commands to many frames (iterations) of the video stream. 
Independent iterations can potentially be executed in 
parallel, with each iteration using one queue. Thus, if N  
queues are available, it means that N instances of the 
dataflow graph can be executed concurrently. Even if 
multiple command queues are used for a single OpenCL-
enabled device, it is possible to issue commands for copy 
operations and kernel execution for concurrent execution. 

4 Experimental results 

This section presents experimental results of performance and 
memory consumption on a set of benchmark applications 
chosen for Stream Dataflow implementation in JSucuri: 
Volume Ray-Casting, Path-Tracing and Sobel Filter. They are 
relevant graphics processing applications often found in  
many popular benchmarks, such as in Bakhoda et al. (2009), 
Bienia (2011), Henning (2006), Bucek et al. (2018) and 
Yazdanbakhsh et al. (2016).. Such applications imposes high-
demand performance constraints that often benefits from the 
stream processing model of computation. 

The Volume Ray-Casting and Path-Tracing algorithms 
are well-known 3-D rendering algorithms. The first is able 
to render 3-D volume information captured from CT-Scan 
and MRI machines, while the latter is able to render 3-D 
virtual scenes with even more realistic light effects, 
including shadow smoothing effects and indirect lighting, 
like 3-D animation movies. Both algorithms operate by 
firing rays towards the 3-D model (or 3-D volume) to 
sample information about the objects to be rendered. 
However, the Path-Tracing algorithm produces one or more 
secondary beams in different directions from diffuse 
surfaces, while Volume Ray-Casting does not produce 
secondary rays at all. Thus, the color of each pixel in Path-
Tracing is calculated by taking into account several pieces 
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of information gathered by each ray-object collision, i.e., 
intersection, all over the 3-D scene. 

The Sobel filter is an image processing algorithm used to 
emphasise the edges of the elements (objects, people, etc.) 
present in an image. So it is a widely used algorithm in 
computer vision applications. The filter determines the 
intensity value of each pixel by calculating the gradient vector 
along the x- and y-axis. Thus, two convolution matrices are 
used for each axis. In this dataflow implementation, the filter 
is applied to a sequence of frames extracted from a movie to 
reproduce the behavior of a stream application. 

A stream dataflow graph was implemented for each 
benchmark application varying from one to six command 
queues. Moreover, the number of JSucuri Workers varies from 
two to twelve (twice the number of command queues for each 
configuration). This is to ensure that there will be enough 
Workers to issue concurrent copies and kernels to the GPU. 
The baseline for performance comparison is the sequential 
implementation of each benchmark application. The 
experimental setup consists of an AMD FX 8-core processor 
with 8GB of RAM, NVidia GeForce 750 TI GPU, running 
Ubuntu 14.04 OS and Java Virtual Machine (JVM) 1.6. 

4.1 Performance results 

In general, regardless of the image resolution and number of 
processed frames, it is possible to observe that the stream 
dataflow applications perform better than their serial 
implementation when using around three command queues, 
achieving about 3000  speedup for the Volume Ray-Casting 
algorithm, as shown in Figure 5, while the Path-Tracing stream 
dataflow implementation achieves about 640 speedup, as 
shown in Figure 6. 

Figure 5 Speedups for the volume ray-casting stream processing 
application in dataflow using up to six command queues 
and producing up to 100 frames 

 

Figure 6 Speedups for the path-tracing stream processing 
application in dataflow using up to six command 
queues and producing up to 30 frames 

 

Algorithms based on Ray-Tracing rendering model fires lots of 
primary rays towards the 3-D scene in order to produce high-
fidelity images from it. The Path-Tracing is a well-known 
complex computer graphics Monte Carlo rendering algorithm 
which simulates the path of light rays within a 3-D scene to 
produce photo-realistic images. The algorithm is used in 3-D 
animation movies and is often processed in dedicated rendering 
farms. Render quality depends on the number of Samples Per 
Pixel (SPP). A single frame can take several hours to be 
processed even using multiple processing units. Also, it can 
take more time depending on the image resolution and the 
number of samples per pixel. Thus, the total number of 
processed rays, i.e., ray-object intersection calculations, have a 
big impact on the algorithm’s overall performance, also due to 
extensive floating-point computations in 64-bits representation 
to overcome precision problems on intersection tests. The Path-
Tracing implementation fires up to 1920 1080  primary rays, 
i.e., camera rays, which are sampled 2048 times and can 
bounce up to eight times from one object to another in order to 
produce a decent image based on the Cornell Box 3-D model. 
Processing high-resolution frames also requires a large amount 
of memory, due to recursive function calls. On the other hand, 
the Ray-Casting implementation fires up to 1920 1080  
primary rays that are sampled 1024 times each and does not 
produce any secondary rays, i.e., do not bounce on the 
volume’s surface. Thus, the Path-Tracing algorithm needs to 
process far more rays than the Ray-Casting algorithm does. 
Yet, the Ray-Casting speedup is far higher than that of  
the Path-Tracing. This result comes from the fact that the  
Path-Tracing rendered 3-D scene is very small, yielding 
substantially fewer copies between the host and the GPU when 
compared to the other benchmark applications, as can be seen 
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later in Figure 8. In contrast, the Ray-Casting rendered volumes 
are much larger and take more time to move in and out of the 
GPU node. Despite that, in both algorithm implementations the 
rays can be processed independently, often yielding almost 
linear speedup as more processing elements are used in 
parallel. Moreover, the Path-Tracing serial implementation is 
very naive, i.e., does not implement any spatial subdivision 
techniques to optimise the number of ray-object collision tests. 
Thus, any effort towards making it parallel will be effective. 

It was not possible to measure the serial and parallel 
execution times above 20 processed frames of 1920 1080  

pixels and 30 processed frames in lower resolutions, because 
the algorithm never reached the end of its execution for such 
configurations and beyond. Still, further experimental results 
have been conducted using only eight samples for each primary 
ray (1280 720 ). Preliminary results indicate that the stream 

dataflow implementation was still able to achieve, on average, 
increasingly higher speedups (115,160,200, 228,244, 268 ) 

against its serial implementation when processing more frames 
(10, 20,30, 40,50,60 ), respectively, using three command 

queues. This suggests that the speedup indeed increases as the 
application is fed with more rays to process. More experiments 
will be carried out in future works. 

Figure 7 Speedups for the Sobel filter stream processing 
application in dataflow using up to six command 
queues and producing up to 100 frames 

 

Beyond three queues or less the speedup tends to decrease for 
most stream applications. The reason for such slowdown is 
possibly due to the overhead of managing more queues than 
actually necessary. Also, more queues mean that more 
commands can be issued concurrently. However, the system’s 
setup only disposes of a single GPU, possibly flooding it with 
concurrent commands that in the end need to be synchronised 
(serialised) by the thread-safe JavaCL API. 

Compared to the workshop paper, the better volume ray-
casting performance results are not due to improvements in 
the algorithm, but due to new input parameters which 
increases the computation requirements and consequently 
increases the quality (resolution) of the rendered volume. 
Sobel is not reaching greater speed-ups because it is by far 
not as computationally intensive as Ray-Tracing algorithms. 
Yet, Sobel is evaluated and presented due to its stream-
processing nature. Each benchmark application was 
executed once and thus standard deviation results are not 
presented. Further execution results will be performed in the 
future in order to get more reliable results. 

4.2 Memory copy results 

The results presented in Figure 8 show the total size of input 
and output copies between the host machine and the GPU 
for varying numbers of command queues, based on the 
previous work (Peña et al., 2014). Observe that memory 
copies and kernel execution can only occur concurrently if 
there is enough memory available for the input/output data 
that the kernel requires/produces. Thus, we evaluate the 
memory copy requirements in this work. The Volume  
Ray-Casting performance results presented earlier in  
Figure 5 do not correspond to the results presented here. 
Still, it is possible to observe that as more queues are used 
the higher the total size of data that is being transferred, for 
all benchmark applications. Also, higher image resolutions 
collaborate to increase the total size of data copies, because 
each image is produced inside the GPU’s global memory 
and later on transferred to the host’s machine. 

Figure 8 Memory copies in Megabytes to and from the GPU for 
up to six command queues 
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The volume ray-casting application is the one that used 
memory the most: up to 600 megabytes. This is due to the 3-D 
volume data that needs to be copied to the GPU memory for 
processing. Each volume consists of 256 256 256   voxels 
of 16-bits each, yielding 16 megabytes per 3-D volume. Thus, 
using six queues means that up to 6 volumes can be copied to 
the GPU concurrently. The rest of the data consists of several 
arrays required for the algorithm’s kernel execution and the 
respective rendered images at the specified resolution. 

On the other hand, the path-tracing application is the one 
that used memory the least: up to 150 megabytes. Once 
more, this is due to the 3-D scene data that needs to be 
copied to the GPU. It consists of nine spheres which are 
used to compose the scene. Each sphere consumes no more 
than 416 kilobits of information. The rest of the data also 
consists of many arrays required for the algorithm’s kernel 
execution and the respective rendered images at the 
specified resolution. 

4.3 Concurrency profiling 

This section provides an analysis of the concurrent kernel 
execution of the Volume Ray-Casting stream processing 
implementation shown in Figure 9. The highlighted nodes are 
feeder nodes, i.e., the JSucuri dataflow runtime can start their 
execution immediately, as they do not depend on receiving 
any input data. These nodes are often used to introduce initial 
parameters to the dataflow program. The other nodes are 
scheduled to execute based on the availability of their input 
operands. Finally, the dashed edges are depicted only to 
simplify the dataflow graph description, avoiding the need to 
replicate the nodes to represent a concurrent execution as 
shown way back in Figure 1. Such edges represent the 
computation of a different volume of the application, 
overlapping copy and processing operations. Therefore, as 
soon as the GPU rendering kernel finishes its execution, the 
results are sent to the next processing node (copyFromGPU),  
which will copy the results from the GPU back to the host 
 

machine. Concurrently, upon the end of the GPU kernel 
execution a new copy of volume data into the GPU will be 
executed as soon as all the input operands (from zero to five 
in GPU kernel node) are available, including the dashed edge 
which will indicate that the GPU memory is ready to receive 
new rendering information from the kernel processing, as 
shown in GPU kernel node in Figure 9. 

Figure 9 Volume ray-casting stream processing graph in JSucuri 

 

The concurrent execution of each GPU kernel interlaced 
with concurrent input/output GPU data copies is presented 
in Figures 10(a) and 10(b), for one and three command 
queues, respectively. It is possible to observe that there is no 
parallel execution when using only one command queue. 
Thus, all the input and output GPU copies are placed in-
between each kernel execution. On the other hand, using 
three command queues enables the parallel execution of not 
only memory copies, but also of kernels. This is because the 
GPU used in the experiments allow parallel kernel 
execution. These results indicate that more command 
queues might further increase the dataflow program 
parallelism, improving its performance. 

Figure 10 Volume ray-casting stream processing graph execution using one and three command queues, as time progresses from left to 
right. Each bar represents a GPU operation and its length represents the time it took it to complete. Moreover, the yellow and red 
bars corresponds to copies in and out the GPU, respectively, while the green bar corresponds to a kernel execution. Each kernel 
represents the rendering process of a different 3-D volume 
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5 Conclusions and ideas for future work 

This work presented JSucuri, a dataflow programming 
library for high-performance computing on heterogeneous 
systems, which are at the core of most cloud/edge/in-situ 
modern architectures. The combination of CPUs and GPUs 
is very common in such distributed systems, especially to 
speedup the kernel part of an application on the GPU-side, 
leaving the least intensive parts of the application on the 
CPU-side. JSucuri implements high-level GPU constructs 
using JavaCL to enable the superposition of memory 
operations and kernel executions issuing multiple command 
queues to tasks of one or more GPUs present in the  
same machine, further increasing parallelism exploitation 
using each GPU as a hardware accelerator that operates 
concurrently within the machine idle CPU cores. The 
JSucuri library greatly helps to leverage the programming 
complexity of stream processing applications. 

A set of relevant graphics processing applications was 
chosen for Stream Dataflow implementation in JSucuri, 
yielding significant speedups when using a configuration of 
multiple command queues. The key idea is to reduce the 
processing time of each stream application via concurrent 
kernel and memory copies, all issued by the JSucuri 
dataflow model. While such stream applications can only be 
executed in a shared-memory machine, they can still benefit 
from dataflow heterogeneous parallelism exploitation and 
can serve as a preliminary analysis on stream processing 
acceleration for distributed systems. 

In the future, experimental results for more than one GPU 
should be performed in order to evaluate actual parallel  
kernel execution besides concurrent kernel and memory  
copy superposition. Also, a comparative analysis on the 
performance of Java-Sucuri against different Java GPU APIs 
will be considered for future iterations of this work. More 
benchmarks applications also need to be implemented using 
the stream dataflow model to further experiment JSucuri on 
different classes of applications. Moreover, a message 
passing interface would allow nodes at distinct networks to 
transmit data in and out all the available CPUs and GPUs on 
the distributed system. A comparative analysis on the 
performance of Java-Sucuri vs. Python-Sucuri is expected in 
future iterations of this work, as it would be unfair at this 
point of the Java-Sucuri implementation to compare to its 
Python-based Sucuri implementation, as the first only 
supports shared-memory systems so far. 
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