
248 Int. J. Grid and Utility Computing, Vol. 10, No. 3, 2019

Copyright © 2019 Inderscience Enterprises Ltd.

An optimised dataflow engine for GPGPU stream
processing

Marcos Paulo Rocha* and
Felipe M.G. França
Engenharia de Sistemas e Ciência da Computação,
Universidade Federal do Rio de Janeiro,
Rio de Janeiro, RJ, Brazil
Email: mrocha@cos.ufrj.br
Email: felipe@cos.ufrj.br
*Corresponding author

Alexandre Solon Nery
Departamento de Engenharia Elétrica,
Universidade de Brasília,
Brasília, DF, Brazil
Email: anery@unb.br

Leandro S. Guedes
Departamento de Informática,
Instituto Federal de Educação,
Ciência e Tecnologia de Mato Grosso do Sul,
Corumbá, MS, Brazil
Email: leandro.guedes@ifms.edu.br

Abstract: Stream processing applications have high-demanding performance requirements that are
hard to tackle using traditional parallel models on modern many-core architectures, such as GPUs.
On the other hand, recent dataflow computing models can naturally expose and facilitate the
parallelism exploitation for a wide class of applications. Thus, instead of following the program
order, different operations can be run in parallel as soon as their input operands become available.
This work presents an extension to an existing dataflow library for Java. The library extension
implements high-level constructs with multiple command queues to enable the superposition of
memory operations and kernel executions on GPUs. Experimental results show that significant
speedup can be achieved for a subset of well-known stream processing applications: Volume
Ray-Casting, Path-Tracing and Sobel Filter. Moreover, new contributions in respect to concurrency
analysis and the Stream processing parallel model in dataflow are presented.

Keywords: dataflow; heterogeneous systems; high-performance computing.

Reference to this paper should be made as follows: Rocha, M.P., França, F.M.G., Nery, A.S.
and Guedes, L.S. (2019) ‘An optimised dataflow engine for GPGPU stream processing’,
Int. J. Grid and Utility Computing, Vol. 10, No. 3, pp.248–257.

Biographical notes: Marcos Paulo Rocha Graduated in Computer Science from Universidade do
Estado do Rio de Janeiro (2014), having received his MSc (2017) from Universidade Federal do
Rio de Janeiro.

Felipe M.G. França graduated in Electrical Engineering from Universidade Federal do Rio de
Janeiro (1982), having received his MSc in Computer Science from Universidade Federal do Rio
de Janeiro (1987) and his PhD in Neural Systems Engineering from Imperial College of Science
Technology And Medicine (1994). He is currently acting on the following subjects: artificial
neural networks, complex systems, computer architecture, cryptographic circuits, distributed
algorithms, computational intelligence, collective robotics, complex systems, intelligent
transportation systems and parallel computing.

Alexandre Solon Nery graduated in Computer Science from Universidade Católica de Brasília
(2006), having received his MSc (2010) and DSc (2014) from Universidade Federal do Rio de
Janeiro. He is currently acting on the following subjects: reconfigurable computing, computer
architecture, distributed and parallel computing (Cloud/Edge/Fog/In-Situ).

 An optimised dataflow engine for GPGPU stream processing 249

Leandro S. Guedes graduated in Computer Science from Universidade Federal de Pelotas (2013),
having received his MSc (2016) in Computer Science from Universidade Federal do Rio Grande
do Sul. He is currently acting on the following subjects: computer graphics, information
visualisation, human-computer interaction and distributed systems.

This paper is a revised and expanded version of a paper entitled ‘Dataflow Programming for Stream
Processing’ presented at the ‘2017 International Symposium on Computer Architecture and High-
Performance Computing Workshops (SBAC-PADW)’, Campinas, Brazil, 17–20 October 2017.

1 Introduction

Moore (2000) predicted that the number of transistors that can
be fit into an integrated chip would nearly double almost every
two years. While such greater numbers of transistors over
the years enabled significant advances in the processor’s
microarchitecture, the transistor miniaturisation trend led to
insulation and heat dissipation problems, prohibiting further
increases of the circuit’s clock frequency, responsible for most
of the performance improvements back then. Thus, chip
designers have since then focused on selling many-core
architectures to keep their business model alive. Parallel
programming quickly became a game-changing method to
achieve high performance on such modern parallel
architectures, such as General Purpose Graphics Processing
Units (GPGPUs – Grasso et al. (2014)), Chip Multi-Processors
(CMPs – Olukotun et al. (1996)) and custom-made accelerators
in Field-Programmable Gate Arrays (FPGAs – Uliana et al.
(2013)). However, building parallel programs is not a trivial
task. In fact, it often requires expertise and many hours of hard
work to fully optimise an application to run on a particular
parallel architecture.

The Dataflow paradigm first presented in Dennis and
Misunas (1975) is a trending computation model that can
naturally exploit the existing parallelism in applications. A
dataflow program is described as a graph, where vertexes
represent tasks (or instructions) and edges depict data
dependency between tasks. Nodes will be fired to run as
soon as all their input operands become available, instead of
following the program order. This means that independent
nodes can potentially run in parallel if there are available
idle processing elements. Regarding edge/fog computing
services, each dataflow graph node may also work, for
instance, like a fog node in the OpenFog Reference
Architecture (Consortium, 2017), which is a consortium
intended to help create and maintain the hardware, software
and system elements necessary for fog computing.

Moreover, the recent development of embedded systems
and Internet of Things (IoT) technologies created new
efficiency and low latency challenges on traditional centralised
cloud computing systems, as shown in Ai et al. (2017). To
overcome such challenges, new technology is changing the
centralised cloud computing architecture to edge devices on the
network border, in a trend called fog or edge computing, as
presented in Cerina et al. (2017) and Li et al. (2018). Hence,
while some functions are better suited for cloud computing,
others are naturally more advantageous to be carried out by fog
nodes, as shown in Liu et al. (2018) and Ahn et al. (2017).

Thus, the focus has shifted to bring specialised computation
and communication devices nearer to the user. Each special
computation unit, also known as hardware accelerator, is often
different from the others, i.e., they have different architectures,
programming models, etc. Hence, GPGPUs are a very popular
kind of hardware accelerator in heterogeneous systems and is
normally employed in highly demanding applications in terms
of performance and throughput. Also, CMPs have multiple
processing cores that can be used together for parallel
processing. More recently, FPGAs have also become popular
in high-performance computing and distributed applications,
due to its energy efficiency, especially when compared to
GPGPUs, as presented in Tan et al. (2017). However,
efficiently using such heterogeneous accelerators is still a
challenge.

This work expands our previous workshop paper
(Rocha et al., 2017) with new performance results and
additional concurrency analysis for the Volume Ray-Casting
implementation. Also, it further discusses the JSucuri
dataflow programming library and runtime, as well as the
state-of-the-art related works. JSucuri aims to enable dataflow
high-performance computing on heterogeneous systems using
CPU and GPU. Thus, ordinary dataflow nodes will be
processed by the available CPU cores, while specialised
dataflow nodes will be processed by the available GPU cores.
It has been implemented in Java as (i) an alternative to
writing dataflow programs other than in Python and (ii) due
to Java’s thread-oriented parallel programming model,
making it easier to share objects within JSucuri code. It is
important to highlight that Java is still the leading
programming language in the market according to TIOBE
Software (2018), competing with C/C++ and Python.
Moreover, the management of threads is often cheaper in
terms of processing speed and usage of resources as they
don’t require a separate address space. Hence, despite the use
of shared memory for means of communicating, JSucuri
dataflow library evaluates the potential of specialised stream
processing in GPUs that can be present in fog/edge/in-situ
nodes of a given application dataflow graph. JSucuri extends
the original Sucuri by implementing concurrent kernel
execution and memory copy operations in GPU via JavaCL
(Chafik, 2015), as shown in Figure 1. In this way, different
nodes of the dataflow program can copy data to a GPU and
retrieve its expected results. Also, different nodes can
issue kernel executions that share the same OpenCL context
and command queues, enabling, for instance, parallel image
processing of a stream of images.

250 M.P. Rocha et al.

Figure 1 Concurrent kernel execution and memory operations in
GPU using JSucuri dataflow programming model

The rest of this work is organised as follows: Section 2 presents
and discusses the state-of-art Dataflow libraries and distributed
solutions for heterogeneous computing using CPU and GPU.
Section 3 describes the JSucuri library and its underlying
architecture. Section 4 discusses the experimental results based
on those programs. Finally, Section 5 concludes this work and
presents some ideas for the future.

2 Related works

Recent research proposes dataflow processing in different
levels of abstraction and granularities, as shown in Alves et al.
(2011), Marzulo et al. (2014), Balaji (2015),Wozniak et al.
(2013),Wilde et al. (2011), Matheou and Evripidou (2016),
Giorgi et al. (2014), Duran et al. (2011) and Bosilca et al.
(2012). In the last decade Dataflow has matured and developed
into an efficient and straightforward parallel programming
model, including edge/fog/in-Situ computing capabilities, as
presented in Carvalho et al. (2017). In essence, any processing
operation (e.g., instructions, functions, programs, etc.) can be
connected to each other in a Dataflow dependency graph, thus
allowing programmers to harvest the potential of modern
parallel systems, as comprehensively presented in Alves et al.
(2018). Besides Sucuri dataflow python library presented in
Alves et al. (2014) and Silva et al. (2016), other works, such as
in Bosboom et al. (2014), sought to use the Dataflow model as
a parallel programming model using high-level languages
constructs. However, these have not included support for the
use of GPUs nor for asynchronous communication and
concurrent kernel execution.

The work presented in Peña et al. (2014), also known as
rCUDA, implements a virtualisation framework for remote
GPUs. It allows the usage of Nvidia GPUs remotely,
providing a virtualisation service on clusters. In this way,
some nodes which have GPUs can be accessed in a
transparent way without the need to modify the code,

because of a dynamic library that translates CUDA (Cuda C
Programming Guide (n.d.)) calls. This framework supports
version 8 of CUDA without the graphical functions. Also, it
supports Remote Direct Memory Access (RDMA) through
InfiniBand and TCP/IP networks.

Tupinambá and Sztajnberg (2012) proposed the
DistributedCL framework, which is similar to rCUDA. The
framework uses an existing OpenCL API to enable its use in
a distributed processing environment on different GPU
vendors. This framework creates the abstraction of a single
OpenCL platform. It assumes that the applications that use it
can perform asynchronous communication. Thus, the data can
be sent simultaneously while the commands for the execution
of the kernel are being executed. The use of asynchronous
communication together with the storage of several
commands before sending them through the network is
pointed out as responsible for the reduction in communication
overhead. Both rCUDA and DistributedCL have used
asynchronous communication to reduce communication
overhead in distributed environments. Furthermore, modern
GPUs have features such as concurrent kernel execution and
data copy superposition. Concurrent execution of a kernel can
lead to an increase in the throughput of programs that may
benefit from this feature.

In this work, we implemented a Java-based dataflow
library inspired in Sucuri (Alves et al., 2014). Although every
thread communication is handled via shared-memory, as will
be described in Section 3, JSucuri dataflow library evaluates
the potential of specialised stream processing using GPUs that
may be present in fog/edge nodes of a given application
dataflow graph. The library explores the concurrent execution
of kernels and memory copies, ranging from one to six
command queues, in order to increase the throughput of the
application with concurrent execution of kernels and memory
operations. Each kernel represents an iteration of a streaming
application described using the Dataflow model. We have
explored the use of asynchronous communication together with
the Dataflow execution model in a heterogeneous multi-core
environment to increase the parallelism exploitation using
Dataflow and also by taking advantage of the concurrent
execution of kernels and data copy.

3 JSucuri

The overall architecture of JSucuri is depicted in Figure 2,
where it is possible to observe some of the major
components of the library, such as the Scheduler, the
Workers and the application Dataflow Graph.

Most of the architectural components of JSucuri are
implemented exactly as in Sucuri, except the Worker class,
which is mapped onto Java threads instead of processes. Also,
Message Passing Interface (MPI) support is not implemented.
Each worker thread lives on the same machine and shares the
same object reference to the operand queue and the dataflow

 An optimised dataflow engine for GPGPU stream processing 251

graph. While the operand queue is thread-safe, the graph is not,
which means that race conditions may occur if different node
functions are executing code on the same object reference at
the same time. Thus, caution must be taken to ensure that
different threads do not step on each other, i.e., do not execute
on the shared objects at the same time. One way to ensure
synchronisation is to provide different instances of an object to
each node function.

Figure 2 The JSucuri architecture. Each worker is implemented
as a Java thread. Functions are handed to each node of
the dataflow graph and they have scope access to the
enclosing’s class static variables, which is useful for
sharing JavaCL objects among node functions

The proposed dataflow Java library inherits the same class
hierarchy of Sucuri. Because of that, the same dataflow
program described in Python can be described in Java,
effortlessly, with some minor differences specific to each
programming language. For instance, the function code that is
handed to each dataflow node to execute is specified as a Java
abstract class, so that the program of each node can be declared
as an anonymous class and instantiated at the same time, during
the dataflow program specification. The abstract class, named
NodeFunction, defines a single abstract method that should
be overridden in order to specify the function that the node
should execute. Moreover, anonymous classes have scope
access to their outer class static attributes, which allows JavaCL
objects to be shared among node functions, enabling each
Worker to issue JavaCL commands independently. Besides,
JavaCL is thread-safe. Thus, if two or more threads call the
same JavaCL method, they will be synchronised.

Figure 3 Dataflow graph for the volume ray-casting benchmark
and its JSucuri code snippet. Feeder nodes (with no
input ports) are presented in gray, while the other nodes
are presented in white. For the sake of simplicity, the
code for each node function is not presented, as well as
some variables declaration and initialisation

252 M.P. Rocha et al.

Figure 4 Stream dataflow programs present a regular flow of input data (readData #i), with many processing iterations. Using multiple
queues to issue OpenCL commands to the device increases data throughput and performance by issuing memory operations and
kernel execution in parallel

Figure 3 shows the dataflow graph for the Volume Ray-Casting
application and its JSucuri code snippet, with a few nodes
invoking the GPU through JavaCL. The graph is composed of
five feeder nodes and four nodes with node functions assigned
to each of them. The feeder nodes are the ones that simply
produce a value to other nodes. Feeder nodes have their execution
started immediately because they do not contain input operands.
All the subsequent nodes have their execution started by a worker
thread as soon as their input operands are available, as follows:

 readVolumeNode: the node expects the volume file
path and the dimensions array to be produced in its ports 0
and 1. The node function readVolume is then executed
with the respective input arguments and produces the
volume data (array of floats) to copyInVolumeNode.

 copyInVolumeNode: with the volume data available,
this node runs the assyncCopyIn function, which uses
the JavaCL context in the outer class scope to enqueue the
volume data copy into the GPU. Once enqueued, it passes
on JavaCL event objects to the node responsible for kernel
execution. The event objects will be used to indicate when
the kernel can start its execution, i.e., whether the volume
has been copied already into the GPU or not.

 execKernelNode: having received the values from
the feeder nodes and the indication that the volume data is
available in the GPU, the node function assyncKernel
can trigger the kernel execution. It is important to observe
that before the execution of the kernel there is a lot of
operations that need to be executed to read and compile
kernel code, which can be executed while the values are
still being copied to the GPU. Thus, it represents an
example of overlapping data and computation, which
contributes to increasing the overall system performance.

 copyOutVolumeNode: finally, the node function
assyncCopyOut waits for the kernel execution to finish
and enqueue the read of the resulting data from the GPU.

Observe that the code presented in Figure 3 is not complete for
the sake of simplicity. Also, this version of Volume Ray-
Casting is very simple, as it only processes a single 3-D
volume. Stream of volumes will be later described in Section 4.

Stream dataflow graphs differ from regular dataflow
graphs mainly because the stream applications present a

regular flow of input data, with many processing iterations,
as shown in the dataflow graph depicted in Figure 4, with
many queues. For instance, image processing applications
apply specific operations (e.g., filters) to each frame of a
video stream. Each frame is often independent of each other
and can be processed concurrently or in parallel, provided
that there are available resources. Therefore, stream
processing graphs seek to concurrently issue multiple
commands to many frames (iterations) of the video stream.
Independent iterations can potentially be executed in
parallel, with each iteration using one queue. Thus, if N
queues are available, it means that N instances of the
dataflow graph can be executed concurrently. Even if
multiple command queues are used for a single OpenCL-
enabled device, it is possible to issue commands for copy
operations and kernel execution for concurrent execution.

4 Experimental results

This section presents experimental results of performance and
memory consumption on a set of benchmark applications
chosen for Stream Dataflow implementation in JSucuri:
Volume Ray-Casting, Path-Tracing and Sobel Filter. They are
relevant graphics processing applications often found in
many popular benchmarks, such as in Bakhoda et al. (2009),
Bienia (2011), Henning (2006), Bucek et al. (2018) and
Yazdanbakhsh et al. (2016).. Such applications imposes high-
demand performance constraints that often benefits from the
stream processing model of computation.

The Volume Ray-Casting and Path-Tracing algorithms
are well-known 3-D rendering algorithms. The first is able
to render 3-D volume information captured from CT-Scan
and MRI machines, while the latter is able to render 3-D
virtual scenes with even more realistic light effects,
including shadow smoothing effects and indirect lighting,
like 3-D animation movies. Both algorithms operate by
firing rays towards the 3-D model (or 3-D volume) to
sample information about the objects to be rendered.
However, the Path-Tracing algorithm produces one or more
secondary beams in different directions from diffuse
surfaces, while Volume Ray-Casting does not produce
secondary rays at all. Thus, the color of each pixel in Path-
Tracing is calculated by taking into account several pieces

 An optimised dataflow engine for GPGPU stream processing 253

of information gathered by each ray-object collision, i.e.,
intersection, all over the 3-D scene.

The Sobel filter is an image processing algorithm used to
emphasise the edges of the elements (objects, people, etc.)
present in an image. So it is a widely used algorithm in
computer vision applications. The filter determines the
intensity value of each pixel by calculating the gradient vector
along the x- and y-axis. Thus, two convolution matrices are
used for each axis. In this dataflow implementation, the filter
is applied to a sequence of frames extracted from a movie to
reproduce the behavior of a stream application.

A stream dataflow graph was implemented for each
benchmark application varying from one to six command
queues. Moreover, the number of JSucuri Workers varies from
two to twelve (twice the number of command queues for each
configuration). This is to ensure that there will be enough
Workers to issue concurrent copies and kernels to the GPU.
The baseline for performance comparison is the sequential
implementation of each benchmark application. The
experimental setup consists of an AMD FX 8-core processor
with 8GB of RAM, NVidia GeForce 750 TI GPU, running
Ubuntu 14.04 OS and Java Virtual Machine (JVM) 1.6.

4.1 Performance results

In general, regardless of the image resolution and number of
processed frames, it is possible to observe that the stream
dataflow applications perform better than their serial
implementation when using around three command queues,
achieving about 3000 speedup for the Volume Ray-Casting
algorithm, as shown in Figure 5, while the Path-Tracing stream
dataflow implementation achieves about 640 speedup, as
shown in Figure 6.

Figure 5 Speedups for the volume ray-casting stream processing
application in dataflow using up to six command queues
and producing up to 100 frames

Figure 6 Speedups for the path-tracing stream processing
application in dataflow using up to six command
queues and producing up to 30 frames

Algorithms based on Ray-Tracing rendering model fires lots of
primary rays towards the 3-D scene in order to produce high-
fidelity images from it. The Path-Tracing is a well-known
complex computer graphics Monte Carlo rendering algorithm
which simulates the path of light rays within a 3-D scene to
produce photo-realistic images. The algorithm is used in 3-D
animation movies and is often processed in dedicated rendering
farms. Render quality depends on the number of Samples Per
Pixel (SPP). A single frame can take several hours to be
processed even using multiple processing units. Also, it can
take more time depending on the image resolution and the
number of samples per pixel. Thus, the total number of
processed rays, i.e., ray-object intersection calculations, have a
big impact on the algorithm’s overall performance, also due to
extensive floating-point computations in 64-bits representation
to overcome precision problems on intersection tests. The Path-
Tracing implementation fires up to 1920 1080 primary rays,
i.e., camera rays, which are sampled 2048 times and can
bounce up to eight times from one object to another in order to
produce a decent image based on the Cornell Box 3-D model.
Processing high-resolution frames also requires a large amount
of memory, due to recursive function calls. On the other hand,
the Ray-Casting implementation fires up to 1920 1080
primary rays that are sampled 1024 times each and does not
produce any secondary rays, i.e., do not bounce on the
volume’s surface. Thus, the Path-Tracing algorithm needs to
process far more rays than the Ray-Casting algorithm does.
Yet, the Ray-Casting speedup is far higher than that of
the Path-Tracing. This result comes from the fact that the
Path-Tracing rendered 3-D scene is very small, yielding
substantially fewer copies between the host and the GPU when
compared to the other benchmark applications, as can be seen

254 M.P. Rocha et al.

later in Figure 8. In contrast, the Ray-Casting rendered volumes
are much larger and take more time to move in and out of the
GPU node. Despite that, in both algorithm implementations the
rays can be processed independently, often yielding almost
linear speedup as more processing elements are used in
parallel. Moreover, the Path-Tracing serial implementation is
very naive, i.e., does not implement any spatial subdivision
techniques to optimise the number of ray-object collision tests.
Thus, any effort towards making it parallel will be effective.

It was not possible to measure the serial and parallel
execution times above 20 processed frames of 1920 1080

pixels and 30 processed frames in lower resolutions, because
the algorithm never reached the end of its execution for such
configurations and beyond. Still, further experimental results
have been conducted using only eight samples for each primary
ray (1280 720). Preliminary results indicate that the stream

dataflow implementation was still able to achieve, on average,
increasingly higher speedups (115,160,200, 228,244, 268)

against its serial implementation when processing more frames
(10, 20,30, 40,50,60), respectively, using three command

queues. This suggests that the speedup indeed increases as the
application is fed with more rays to process. More experiments
will be carried out in future works.

Figure 7 Speedups for the Sobel filter stream processing
application in dataflow using up to six command
queues and producing up to 100 frames

Beyond three queues or less the speedup tends to decrease for
most stream applications. The reason for such slowdown is
possibly due to the overhead of managing more queues than
actually necessary. Also, more queues mean that more
commands can be issued concurrently. However, the system’s
setup only disposes of a single GPU, possibly flooding it with
concurrent commands that in the end need to be synchronised
(serialised) by the thread-safe JavaCL API.

Compared to the workshop paper, the better volume ray-
casting performance results are not due to improvements in
the algorithm, but due to new input parameters which
increases the computation requirements and consequently
increases the quality (resolution) of the rendered volume.
Sobel is not reaching greater speed-ups because it is by far
not as computationally intensive as Ray-Tracing algorithms.
Yet, Sobel is evaluated and presented due to its stream-
processing nature. Each benchmark application was
executed once and thus standard deviation results are not
presented. Further execution results will be performed in the
future in order to get more reliable results.

4.2 Memory copy results

The results presented in Figure 8 show the total size of input
and output copies between the host machine and the GPU
for varying numbers of command queues, based on the
previous work (Peña et al., 2014). Observe that memory
copies and kernel execution can only occur concurrently if
there is enough memory available for the input/output data
that the kernel requires/produces. Thus, we evaluate the
memory copy requirements in this work. The Volume
Ray-Casting performance results presented earlier in
Figure 5 do not correspond to the results presented here.
Still, it is possible to observe that as more queues are used
the higher the total size of data that is being transferred, for
all benchmark applications. Also, higher image resolutions
collaborate to increase the total size of data copies, because
each image is produced inside the GPU’s global memory
and later on transferred to the host’s machine.

Figure 8 Memory copies in Megabytes to and from the GPU for
up to six command queues

 An optimised dataflow engine for GPGPU stream processing 255

The volume ray-casting application is the one that used
memory the most: up to 600 megabytes. This is due to the 3-D
volume data that needs to be copied to the GPU memory for
processing. Each volume consists of 256 256 256 voxels
of 16-bits each, yielding 16 megabytes per 3-D volume. Thus,
using six queues means that up to 6 volumes can be copied to
the GPU concurrently. The rest of the data consists of several
arrays required for the algorithm’s kernel execution and the
respective rendered images at the specified resolution.

On the other hand, the path-tracing application is the one
that used memory the least: up to 150 megabytes. Once
more, this is due to the 3-D scene data that needs to be
copied to the GPU. It consists of nine spheres which are
used to compose the scene. Each sphere consumes no more
than 416 kilobits of information. The rest of the data also
consists of many arrays required for the algorithm’s kernel
execution and the respective rendered images at the
specified resolution.

4.3 Concurrency profiling

This section provides an analysis of the concurrent kernel
execution of the Volume Ray-Casting stream processing
implementation shown in Figure 9. The highlighted nodes are
feeder nodes, i.e., the JSucuri dataflow runtime can start their
execution immediately, as they do not depend on receiving
any input data. These nodes are often used to introduce initial
parameters to the dataflow program. The other nodes are
scheduled to execute based on the availability of their input
operands. Finally, the dashed edges are depicted only to
simplify the dataflow graph description, avoiding the need to
replicate the nodes to represent a concurrent execution as
shown way back in Figure 1. Such edges represent the
computation of a different volume of the application,
overlapping copy and processing operations. Therefore, as
soon as the GPU rendering kernel finishes its execution, the
results are sent to the next processing node (copyFromGPU),
which will copy the results from the GPU back to the host

machine. Concurrently, upon the end of the GPU kernel
execution a new copy of volume data into the GPU will be
executed as soon as all the input operands (from zero to five
in GPU kernel node) are available, including the dashed edge
which will indicate that the GPU memory is ready to receive
new rendering information from the kernel processing, as
shown in GPU kernel node in Figure 9.

Figure 9 Volume ray-casting stream processing graph in JSucuri

The concurrent execution of each GPU kernel interlaced
with concurrent input/output GPU data copies is presented
in Figures 10(a) and 10(b), for one and three command
queues, respectively. It is possible to observe that there is no
parallel execution when using only one command queue.
Thus, all the input and output GPU copies are placed in-
between each kernel execution. On the other hand, using
three command queues enables the parallel execution of not
only memory copies, but also of kernels. This is because the
GPU used in the experiments allow parallel kernel
execution. These results indicate that more command
queues might further increase the dataflow program
parallelism, improving its performance.

Figure 10 Volume ray-casting stream processing graph execution using one and three command queues, as time progresses from left to
right. Each bar represents a GPU operation and its length represents the time it took it to complete. Moreover, the yellow and red
bars corresponds to copies in and out the GPU, respectively, while the green bar corresponds to a kernel execution. Each kernel
represents the rendering process of a different 3-D volume

256 M.P. Rocha et al.

5 Conclusions and ideas for future work

This work presented JSucuri, a dataflow programming
library for high-performance computing on heterogeneous
systems, which are at the core of most cloud/edge/in-situ
modern architectures. The combination of CPUs and GPUs
is very common in such distributed systems, especially to
speedup the kernel part of an application on the GPU-side,
leaving the least intensive parts of the application on the
CPU-side. JSucuri implements high-level GPU constructs
using JavaCL to enable the superposition of memory
operations and kernel executions issuing multiple command
queues to tasks of one or more GPUs present in the
same machine, further increasing parallelism exploitation
using each GPU as a hardware accelerator that operates
concurrently within the machine idle CPU cores. The
JSucuri library greatly helps to leverage the programming
complexity of stream processing applications.

A set of relevant graphics processing applications was
chosen for Stream Dataflow implementation in JSucuri,
yielding significant speedups when using a configuration of
multiple command queues. The key idea is to reduce the
processing time of each stream application via concurrent
kernel and memory copies, all issued by the JSucuri
dataflow model. While such stream applications can only be
executed in a shared-memory machine, they can still benefit
from dataflow heterogeneous parallelism exploitation and
can serve as a preliminary analysis on stream processing
acceleration for distributed systems.

In the future, experimental results for more than one GPU
should be performed in order to evaluate actual parallel
kernel execution besides concurrent kernel and memory
copy superposition. Also, a comparative analysis on the
performance of Java-Sucuri against different Java GPU APIs
will be considered for future iterations of this work. More
benchmarks applications also need to be implemented using
the stream dataflow model to further experiment JSucuri on
different classes of applications. Moreover, a message
passing interface would allow nodes at distinct networks to
transmit data in and out all the available CPUs and GPUs on
the distributed system. A comparative analysis on the
performance of Java-Sucuri vs. Python-Sucuri is expected in
future iterations of this work, as it would be unfair at this
point of the Java-Sucuri implementation to compare to its
Python-based Sucuri implementation, as the first only
supports shared-memory systems so far.

References
Ahn, S., Gorlatova, M. and Chiang, M. (2017) ‘Leveraging fog and

cloud computing for efficient computational offloading’,
Proceedings of the IEEE MIT Undergraduate Research
Technology Conference (URTC), pp.1–4.

Ai, Y., Peng, M. and Zhang, K. (2017) ‘Edge cloud computing
technologies for internet of things: a primer’, Digital
Communications and Networks, Vol. 4, No. 2, pp.77–86.

Alves, T., Marzulo, L., Kundu, S. and França, F.M.G. (2018)
‘Concurrency analysis in dynamic dataflow graphs’, IEEE
Transactions on Emerging Topics in Computing, pp.1–1.

Alves, T.A., Marzulo, L.A., Franca, F.M. and Costa, V.S. (2011)
‘Trebuchet: exploring TLP with dataflow virtualisation’,
International Journal of High Performance Systems
Architecture, Vol. 3, Nos. 2/3, pp.137–148.

Alves, T.A.O., Goldstein, B.F., França, F.M.G. and Marzulo, L.A.J.
(2014) ‘A minimalistic dataflow programming library for
python’, Proceedings of the International Symposium on
Computer Architecture and High Performance Computing
Workshop, pp.96–101.

Bakhoda, A., Yuan, G.L., Fung, W.W.L., Wong, H. and Aamodt,
T.M. (2009) ‘Analyzing cuda workloads using a detailed gpu
simulator’, Proceedings of the IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS),
IEEE Computer Society, pp.163–174.

Balaji, P. (2015) Intel Threading Building Blocks. MIT Press

Bienia, C. (2011) Benchmarking Modern Multiprocessors, PhD
Thesis, Princeton University.

Bosboom, J., Rajadurai, S., Wong, W-F. and Amarasinghe, S. (2014)
‘StreamJIT: a commensal compiler for high-performance
stream programming’, Proceedings of the ACM International
Conference on Object Oriented Programming Systems
Languages and Applications, ACM, Vol. 49, pp.177–195.

Bosilca, G., Bouteiller, A., Danalis, A., Hérault, T., Lemarinier, P.,
and Dongarra. J. (2012) ‘Dague: a generic distributed dag
engine for high performance computing’, Parallel
Computing, Vol. 38, Nos. 1/2, pp.37–51.

Bucek, J., Lange, K-D. and v. Kistowski, J. (2018) ‘Spec epu2017:
next-generation compute benchmark’, Proceedings of the
Companion of the ACM/SPEC International Conference on
Performance Engineering (ICPE’18), ACM. New York, NY,
USA, pp.41–42.

Carvalho, C.B.G., Ferreira, V.C., França, F.M.G., Bentes, C.,
Alves, T.A.O., Sena, A.C. and Marzulo, L.A.J. (2017)
‘Towards a dataflow runtime environment for edge, fog and
in-situ computing’, Proceedings of the International
Symposium on Computer Architecture and High Performance
Computing Workshops (SBAC-PADW), pp.115–120.

Cerina, L., Notargiacomo, S., Paccanit, M.G. and Santambrogio,
M.D. (2017) ‘A fog-computing architecture for preventive
healthcare and assisted living in smart ambients’, Proceedings
of the IEEE 3rd International Forum on Research and
Technologies for Society and Industry (RTSI), pp.1–6.

Chafik, O. (2015) Javacl: Opencl bindings for java. Available
online at: https://github. com/nativelibs4java/
JavaCL (accessed on 9 September 2017).

Consortium (2017) Openfog reference architecture for fog computing.
Available online at: www.OpenFogConsortium.org

Cuda c Programming Guide (n.d.) Available online at:
http://docs.nvidia.com/cuda/cuda-c-
programming-guide/#axzz4idxrP1Vq (accessed on
30 May 2017).

Dennis, J.B. and Misunas, D.B. (1975) ‘A preliminary architecture
for a basic data-flow processor’, Proceedings of the 2Nd
Annual Symposium on Computer Architecture (ISCA’75),
New York, NY, USA, ACM, pp.126–132.

Duran, A., Ayguadé, E., Badia, R.M., Labarta, J., Martinell, L.,
Martorell, X. and Planas, J. (2011) ‘Ompss: a proposal for
programming heterogeneous multi-core architectures’,
Parallel Processing Letters, Vol. 21, pp.173–193.

 An optimised dataflow engine for GPGPU stream processing 257

Giorgi, R., Badia, R.M., Bodin, F., Cohen, A., Evripidou, P.,
Faraboschi, P., Fechner, B., Gao, G.R., Garbade, A., Gayatri,
R., Girbal, S., Goodman, D., Khan, B., Kolia, S., Landwehr, J.,
Nhat Minh N., Li, F., Lujàn, M., Mendelson, A., Morin, L.,
Navarro, N., Patejko, T., Pop, A., Trancoso, P., Ungerer, T.,
Watson, I., Weis, S., Zuckerman, S. and Valero, M. (2014)
‘TERAFLUX: harnessing dataflow in next generation
teradevices’, Microprocessors and Microsystems, pp.976–990.

Grasso, I., Radojkovic, P., Rajovic, N., Gelado, I. and Ramirez, A.
(2014) ‘Energy efficient hpc on embedded socs: optimization
techniques for mali gpu’, Proceedings of the IEEE 28th
International Parallel and Distributed Processing
Symposium, pp.123–132.

Henning, J.L. (2006) ‘Spec cpu2006 benchmark descriptions’,
SIGARCH Computer Architecture News, Vol. 34, No. 4, pp.1–17.

Li, J., Jin, J., Yuan, D. and Zhang, H. (2018) ‘Virtual fog: a
virtualization enabled fog computing framework for internet
of things’, IEEE Internet of Things Journal, Vol. 5, No. 1,
pp.121–131.

Liu, L., Chang, Z., Guo, X., Mao, S. and Ristaniemi. T. (2018)
‘Multiobjective optimization for computation offloading in
fog computing’, IEEE Internet of Things Journal, Vol. 5,
No. 1, pp. 283–294.

Marzulo, L. A., Alves, T.A., França, F.M. and Costa, V.S. (2014)
‘Couillard: parallel programming via coarse-grained data-flow
compilation’, Parallel Computing, Vol. 40, No. 10, pp.661–680.

Matheou G., and Evripidou, P. (2016). ‘FREDDO: an efficient
framework for runtime execution of data-driven objects’,
Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications
(PDPTA), Las Vegas, pp. 265–273.

Moore, G.E. (2000) Readings in computer architecture, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, chapter
Cramming More Components Onto Integrated Circuits,
pp.56–59.

Olukotun, K., Nayfeh, B.A., Hammond, L., Wilson, K. and
Chang, K. (1996) ‘The case for a single-chip multiprocessor’,
IEEE Computer, pp.2–11.

Peña, A.J., Reaño, C., Silla, F., Mayo, R., Quintana-Ortí, E.S. and
Duato, J. (2014) ‘A complete and efficient cuda-sharing solution
for hpc clusters’, Parallel Computing, Vol. 40, No. 10,
pp.574–588.

Rocha, M.P., França, F.M.G., Nery, A.S. and Guedes. L.S. (2017)
‘Dataflow programming for stream processing’, Proceedings of
the International Symposium on Computer Architecture and
High Performance Computing Workshops (SBAC-PADW),
pp.103–108.

Silva, R.J.N., Goldstein, B., Santiago, L., Sena, A.C.,
Marzulo, L.A.J., Alves, T.A.O. and França, F.M.G. (2016)
‘Task scheduling in sucuri dataflow library’, Proceedings of
the International Symposium on Computer Architecture and
High Performance Computing Workshops (SBAC-PADW),
pp.37–42.

Tan, T.H., Ooi, C.Y. and Marsono, M.N. (2017) ‘hpfog: a fpga-
based fog computing platform’, Proceedings of the
International Conference on Networking, Architecture, and
Storage (NAS), pp.1–2.

TIOBE Software (2018) TIOBE programming community index.
Available online at: http://www.tiobe.com/
index.php/content/ paperinfo/tpci/index.
html (accessed on 24 July 2018).

Tupinambá, A. and Sztajnberg, A. (2012) ‘Distributedcl: a
framework for transparent distributed gpu processing using
the opencl api’, Proceedings of the 13th Symposium on
Computer Systems (WSCAD-SSC), IEEE, pp.187–193.

Uliana, D., Kepa, K. and Athanas, P. (2013) ‘Fpga-based hpc
application design for non-experts’, Proceedings of the
International Symposium on Rapid System Prototyping (RSP),
pp.9–15.

Wilde, M. Hategan, M., Wozniak, J.M., Clifford, B., Katz, D.S.
and Foster, I. (2011) ‘Swift: a language for distributed parallel
scripting’, Parallel Computing (Emerging Programming
Paradigms for Large-Scale Scientific Computing), Vol. 37,
No. 9, pp.633–652.

Wozniak, J.M., Armstrong, T.G., Wilde, M., Katz, D.S., Lusk, E.
and Foster, I.T. (2013) ‘Swift/t: Large-scale application
composition via distributed-memory dataflow processing’,
Proceedings of the 13th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), pp.95–102.

Yazdanbakhsh, A., Mahajan, D., Lotfi-Kamran, P. and
Esmaeilzadeh, H. (2016) Axbench: A Benchmark Suite f
or Approximate Computing Across the System Stack.
Technical Repot. Available online at: http://hdl.handle.net/
1853/54485

